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a b s t r a c t

Background: Both short sleep duration and sleep-disordered breathing (SDB) are associated with poor
neurocognitive development. However, the co-contributions of short sleep duration and SDB on
neurodevelopment in pre-school children are relatively unknown.
Methods: We assessed both sleep duration and SDB by quarterly questionnaire from three months to two
years of age among Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort partici-
pants. Group-based modeling determined trajectories of total, daytime, and nighttime sleep duration and
SDB. Linear regression was used to assess the impact of sleep duration and SDB trajectories on cognitive
(primary outcome) and language (secondary) development at two years of age as assessed by the Bayley
Scale of Infant Development (BSID-III) (mean 100; standard deviation of 15).
Results: Of the 822 CHILD Edmonton participants, 703 (86%) were still enrolled at two years of age with
593 having BSID-III data at two years of age. Trajectory analysis identified four total sleep durations
phenotypes [short sleepers (17.9%), decline to short sleepers (21.1%), intermediate sleepers (36.9%) and
long sleepers (24.1%)]. Compared to children with intermediate sleep durations, short sleepers had a 5.2-
point lower cognitive development score at two years of age [standard error (SE) 1.7; p ¼ 0.002].
Nocturnal sleep duration, compared to daytime sleep duration had the greatest effect on cognitive
development. We also identified three SDB symptom trajectories [early-onset SDB (15.7%), late-onset
SDB (14.2%), and persistent SDB (5.3%)] and 79.5% of children had no SDB symptoms. Children with
persistent SDB also had a 5.3-point lower language score (SE 2.7; p ¼ 0.05) compared to children with no
SDB. SDB trajectories were not associated with cognitive development.
Conclusion: In a population-representative birth cohort study, both short sleep duration and SDB were
associated with adverse neurodevelopment at two years of age. Children with short nighttime sleep
duration had lowered cognitive and language scores and children with persistent SDB also had lower
language scores.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Insufficient sleep duration and sleep-disordered breathing
(SDB), from snoring to sleep apnea [1], are each associated with
adverse cognitive development in children, adolescents [2] and
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adults. Among adults, nocturnal sleep has been found to be more
beneficial than daytime sleep for the encoding of verbal informa-
tion [3] and motor sequences [4]. Reduced nighttime sleep at one
year of age was associated with reduced executive functioning
performance at four years of age [5]. Similarly, shorter nighttime
sleep was associated with reduced attention among preschool
children [6]. Infants with shorter sleep duration also displayed
reduced memory retention [7]. Reduced childhood nighttime sleep
is associated with worse new-word memory recall [8]. Poor
sleepewake consolidation by two years of age was associated with
language delay by five years of age [9].

Longitudinal patterns of sleep duration, modeled using growth
mixture modeling, have demonstrated how sleep duration over
time [10] was associated with neurocognitive development [11,12].
Four sleep-duration patterns (typical sleepers, initially short
sleepers, poor sleepers, and persistent short sleepers) were iden-
tified among children with biennial sleep duration data from birth
to seven years of age [11,12]. Persistent short sleep in children
was associated with lower physical, social, and emotional health
compared to typical sleepers [11]. In a separate study, persistent
short sleep duration between 2.5 and 10 years of agewas associated
with poor receptive vocabulary performance at 10 years of age [13].

SDB has been associated with negative consequences for chil-
dren's cognitive development [14]. Several longitudinal cohort
studies have shown associations between SDB in school-age chil-
dren (five years of age or older) and adverse executive function
[15,16] and behavior [17] difficulties. The Tucson children's assess-
ment of sleep apnea (TuCASA) study reported an increased preva-
lence of learning difficulties [16] and behavior problems [18] among
5- and 12-year-old children with SDB. In the Dunedin longitudinal
birth cohort, persistent sleep problems between five and nine years
of age were associated with lower neuropsychological function at
13 years of age [19]. The Cleveland Children's Sleep andHealth study
showed that 8- to 11-year-old children with SDB already demon-
strate a higher prevalence of behavioral problems [20].

SDB disrupts sleep architecture [21] and may confound the rela-
tionship between sleep duration and cognitive development [22].
Snoring but not sleep duration was associated with performance on
cognitive and language assessments among preschool aged children
(aged 3e6 years) [23]. We present findings from the Canadian
Healthy Infant Longitudinal Development (CHILD) study Edmonton
site in which we explored whether the co-contributions of sleep
duration and SDB were associated with cognitive (primary) and
language (secondary) development at two years of age. We hypoth-
esized that children with reduced sleep duration (primary exposure
variable) up to two years of age would present with reduced cogni-
tive and language outcomes at two years of age. Additional analysis
will examine the impact of SDB (secondary exposure variable) on
neurobehavioral development at two years of age.

2. Methods

2.1. Study participants

CHILD is a longitudinal birth cohort study designed to assess the
influence of geneeenvironment interactions on the development of
allergy and asthma. CHILD Edmonton families (N ¼ 822), recruited
between 2008 and 2012, participated in an add-on study exam-
ining the longitudinal relationship between SDB and cognitive
development. Mothers were seen at recruitment during pregnancy
and infants were seen at in-clinic visits at one and two years of age.
Informed consent was obtained from all mothers as well as
consenting fathers when available. Approval for this research study
was obtained from the Research Ethics Board (REB) at the Univer-
sity of Alberta (Pro00002099).
2.2. Study variables

2.2.1. Cognitive (primary outcome) at two years of age
Cognitive development was assessed using the Bayley Scale of

Infant Development (BSID-III) at two years of age. The BSID-III is a
standardized, reliable and validated developmental assessment of
infants between 6 and 42months of age [24,25]. A trained research
assistant conducted testing in an examination roomwith a primary
caregiver present. A registered educational psychologist completed
annual or semi-annual assessments of the research assistant's
administration of the BSID-III to ensure reliability. All subtests were
completed in a single 45-min session, although only the results
from the cognitive subtest will be addressed in the current study.
Breaks were provided if infants displayed signs of boredom or
inattentiveness. The research assistants were not blinded to the
infant's sleep or snoring symptoms at the time of BSID-III testing.
Two individuals scored the BSID-III and the results compared for
consistency. Raw cognitive scores were converted to a composite
score (population mean 100 and standard deviation of 15).

2.2.2. Language development (secondary outcome)
The BSID-III language scale assesses both receptive and

expressive communication. Receptive communication includes
how well the child is able to recognize sounds and understand
orally presented words and sentences such as following simple
directions or identifying an object by pointing to its picture or
following simple directions. Expressive communication includes
how well the child is able to communicate using sound, words or
gestures; tasks include asking the child to identify pictures using
words and answering questions. The BSID-III total language scores,
the sum of the receptive and expressive language scales, were
converted to a composite score (populationmean 100 and standard
deviation of 15).

2.2.3. Sleep duration (primary exposure variable)
The 13-item parent-completed Brief Infant Sleep Questionnaire

(BISQ) [26], was administered quarterly from threemonths of age.
Parents reported the amount of time that their infants slept during
the day and night separately. Total sleep was calculated by
summing day and night sleep times.

2.2.4. SDB (secondary exposure variable)
A 22-item sleep-related breathing disorder (SRBD) scale was

completed by parents quarterly from threemonths to two years of
age. The SRBD ratio is obtained by dividing the sum of all ‘yes’
responses by the total number of non-missing items (yes or no).
Infants with a SRBD ratio greater than 0.33 were considered to have
SDB at that quarterly assessment [27].

2.3. Confounding variables

Please see the Supplementary Material for a more in-depth
assessment of covariates. These covariates include maternal age,
birth weight (kg), first born, ethnicity, family income, marital
status, highest education achieved, maternal depression, maternal
stress, season of birth, and control, for which a research assistant
completed the BSID-III testing at two years of age.

2.3.1. Family history of language delay
The primary care giver completed the Language Development

Survey (LDS) [28] when children were two years of age. Children
were classified as having a family history of language delay if their
parent/guardian reported that someone in the family had been
slow in learning to talk.
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2.3.2. Sleep efficiency, apneaehypopnea index, desaturation index
A single-night level-three home polysomnography study (PSG;

NOX-T3) was completed at a mean age of 13.2months [95% confi-
dence interval (CI) 9.5, 22.2]. Home PSG was not completed at any
other time point. Staff installed the PSG equipment in the infant's
bedroom approximately 30 min before their bedtime. The NOX-T3
PSG recorded pulse oximetry, real-time audio, and chest/abdominal
respiratory inductance plethysmography [29]. PSG scoring was
completed by trained PSG technicians (Sleep Strategies). The
scoring rubric (Supplementary Material), based on the AASM pe-
diatric scoring guidelines [30], was modified to reflect the channels
available for the NOX-T3. Measures of apneas, hypopneas, sleep
duration, total time in bed, and sleep efficiency were obtained from
the PSG. Sleep efficiency was calculated as the number of minutes
of sleep divided by the number of minutes the infant was in bed.

2.3.3. Duration of breastfeeding
Breastfeeding is associated with increased nighttime waking

[12]. Mothers reported whether they were breastfeeding, formula
feeding, or provided solid food for their infants at 3, 6, 12, and
24months of age.

2.3.4. Gestational age at delivery
Gestational age at delivery was obtained from the hospital birth

chart.

2.3.5. Environmental tobacco smoke
Exposure to household smoke was obtained from maternal

reporting during pregnancy, at threemonths and 12months of age.

2.4. Statistical analysis

Children with known neurodevelopmental delays were
excluded from all analyses. Group-based trajectory modeling, using
finite mixture modeling (STATA Proc Traj e January 2017 download
[31,32]), was used to determine (1) trajectories of sleep duration to
two years of age (daytime, nighttime, and total) using quarterly
BISQ assessments, and (2) trajectories of SDB to two years of age
using quarterly SRDB assessments. Participants were assigned to a
trajectory based on the group trajectory for which they had the
highest probability of membership. Linear, quadratic, and cubic
trajectory models were considered for model development [33].
Participants had to have at least one PSQ ratio and one completed
BISQ to be included in each trajectory analysis. The model with the
best-fit [lowest Bayesian information criterion (BIC)] and signifi-
cant group percentage was selected.

Chi-squared tests (categorical predictors) and t-tests (contin-
uous predictors) were used to compare demographic variables
between participants with and without BSID-III cognitive scores at
two years of age. Univariate linear regression analyses identified
factors associated with cognitive performance on the BSID-III at
two years of age (primary outcome). Measures of SDB assessed by
PSG, including sleep efficiency, apnea and hypopnea index, and
desaturation index, were considered as univariate predictors of
cognition. Predictors significant in univariate analysis (p < 0.05),
such as SDB trajectories, were included in multivariate analyses.
The BIC were compared among the daytime, nighttime, and total
sleep trajectorymodels to determinewhich sleep trajectories to use
in the multivariate analyses. For multivariate analyses, missing
values on all variables other than BSID-III (including BISQ and SDB
questionnaires) were replaced with the mean or reference (for
continuous and categorical variables, respectively) and a dummy
variable was included in the analysis in order to account for the
replacement. Variables not statistically significant (p < 0.05) in the
multivariate analyses were excluded. Interactions between SDB and
sleep trajectories were also explored and kept in the model if
significant (p < 0.05). Analysis controlled for which research staff
completed the BSID-III testing at two years of age. Similar statistical
analyses were used to identify factors associated with language
performance on the BSID-III at two years of age. Stata 14 (STATA
corp.) was used for all analyses.

3. Results

Of the 822 participants recruited to CHILD Edmonton, 593 (72.1%)
completed the two-year BSID-III assessment. Participants with
cognitive outcomes at two years of age were more likely to be
Caucasian (416/581; 71.6%, Table 1), come from households with an
income of $60,000 or more (506/569; 88.9%, Table 1) and have a
mother that attended post-secondary education compared to in-
dividuals without cognitive data at two years of age (p < 0.001 for all
three outcomes). Average breastfeeding duration was 9.0months
(95% CI 8.5, 9.5) among mothers of infants with cognitive outcomes
at two years. Participants with and without cognitive outcomes at
two years did not differ with respect to gender, SDB symptoms,
nighttime sleep duration, gestational age at delivery, and birth
weight. See Table 1 for demographic information pertaining to
categorical predictors and Table 2 for demographic information
pertaining to continuous predictors.

3.1. Trajectories for sleep duration and SDB from 3 to 24months

3.1.1. Total sleep trajectories between 3 and 24months
We identified four total infant sleep patterns throughout the first

two years of life (Fig. 1): ‘Short sleepers’, ‘Decline to short sleepers’,
‘Intermediate sleepers’, and ‘Long sleepers’. The short sleepers
(17.9%) slept a total of 11.5 h at threemonths of age and 11.9 h at
24months. The decline to short sleepers (21.1%) slept 15.5 h at
threemonths of age and only 12.0 h at 24months. The intermediate
sleepers (36.9%) slept 13.4 h at threemonths of age and 12.9 h at
24months. The long sleepers (24.1%) slept 16.0 h at threemonths of
age and 13.3 h at 24months. For comparison, population data as
reported by Gelland et al., for mean hours of total sleep between
threemonths and two years of age [34] are presented in
Supplementary Table S2.

3.1.2. Nighttime sleep trajectories between 3 and 24months
We identified three nighttime sleep trajectories from

threemonths to two years of age (Fig. 2): ‘Short sleepers’, ‘Interme-
diate sleepers’ and ‘Long sleepers’. Short sleepers (9.7%) slept from
7.7 at threemonths of age to 9.0 h/night at two years of age,
respectively; intermediate sleepers (39.2%) slept from 8.7 at
threemonths of age to10.0 h/night at two years and long sleepers
(51.1%) from 10.1 at threemonths to 11.1 h/night at two years.
Nighttime sleep duration from 3 to 24months of age is presented in
the Supplementary Table S3.

3.1.3. Daytime sleep trajectories between 3 and 24months
We identified four daytime infant sleep patterns throughout the

first two years of life (Fig. 3): ‘Short sleepers’, ‘Decrease to short
sleepers’, ‘Intermediate sleepers’ and ‘Decrease to intermediate
sleepers’. At threemonths of age, the short sleepers (29.5%) spent an
average of 3.1 h asleep during the day and were asleep for 1.8 h
throughout the day by 24months. The decrease to short sleepers
(34.4%) spent approximately 5.9 h asleep during the day at
threemonths but only 1.9 h throughout the day by 24months. The
intermediate sleepers (23.8%) spent approximately 4.0 h asleep
during the day at threemonths of age, and 2.6 h throughout the day
by 24months. The decrease to intermediate sleepers (12.2%) spent



Table 1
Demographics describing the Canadian Healthy Infant Longitudinal Development (CHILD) Edmonton sample (categorical predictors).

Cognitive data (two years) present, % (N/total) Cognitive data absent, % (n/total) pa

Categorical
Female 48.4 (287/593) 50.7 (111/219) 0.06
Caucasian (child) 70.6 (416/581) 56.4 (110/195) <0.01
Caucasian (mother) 78.7 (463/588) 68.2 (137/201) <0.01
Income $60,000 or more 88.9 (506/569) 73.0 (135/185) <0.01
Mother attended post-secondary 93.5 (531/568) 84.3 (167/198) <0.01
Maternal smoking 3.5 (20/571) 7.2 (14/195) <0.01
SDB threemonths 4.0 (21/530) 4.8 (7/145) 0.64
SDB sixmonths 4.6 (22/480) 8.6 (9/105) 0.10
SDB ninemonths 7.7 (39/505) 7.6 (10/131) 0.97
SDB 12months 5.6 (30/522) 6.2 (6/97) 0.87
SDB 15months 8.9 (42/474) 6.9 (6/48) 0.55
SDB 18months 11.0 (54/491) 7.3 (5/69) 0.34
SDB 21months 9.3 (47/504) 12.2 (6/49) 0.51
SDB 24months 9.7 (50/515) 13.7 (7/51) 0.36

SDB, sleep-disordered breathing.
a Represents statistical significance of chi-squared.

Table 2
Demographics describing the Canadian Healthy Infant Longitudinal Development (CHILD) Edmonton sample (continuous predictors).

Continuous Cognitive data (two years) present, mean (95% CI) Cognitive data absent, mean (95% CI) pa

Nighttime sleep (h) (threemonths) 9.4 (9.2, 9.5) N ¼ 529 9.3 (9.0, 9.5) N ¼ 148 0.50
Nighttime sleep (h) (sixmonths) 9.9 (9.8, 10.0) N ¼ 502 9.9 (9.7, 10.2) N ¼ 113 0.83
Nighttime sleep (h) (ninemonths) 10.4 (10.3, 10.5) N ¼ 505 10.1 (9.9, 10.4) N ¼ 130 0.03
Nighttime sleep (h) (12months) 10.6 (10.5, 10.7) N ¼ 530 10.5 (10.3, 10.8) N ¼ 96 0.59
Nighttime sleep (h) (15months) 10.7 (10.6, 10.8) N ¼ 475 10.5 (10.3, 10.8) N ¼ 87 0.24
Nighttime sleep (h) (18months) 10.7 (10.6, 10.8) N ¼ 510 10.3 (10.1, 10.6) N ¼ 75 <0.01
Nighttime sleep (h) (21months) 10.6 (10.5, 10.7) N ¼ 502 10.2 (9.9, 10.6) N ¼ 49 0.01
Nighttime sleep (h) (24months) 10.5 (10.4, 10.6) N ¼ 533 10.3 (10.1, 10.6) N ¼ 68 0.20
Time in bed (min) (assessed using PSG at one year) 554.8 (546.2, 563.4) N ¼ 473 534.1 (510.1, 558.1) N ¼ 91 0.07
Sleep efficiency (min asleep/min in bed) 91.3 (90.8, 91.8) N ¼ 473 91.7 (90.6, 92.8) N ¼ 91 0.55
Gestational age (weeks) 39.5 (39.4, 39.6) N ¼ 593 39.4 (39.2, 39.5) N ¼ 216 0.21
Infant weight (kg) 3.4 (3.4, 3.5) N ¼ 590 3.4 (3.3, 3.5) N ¼ 212 0.66
Breastfeeding duration (months) 9.0 (8.5, 9.5) N ¼ 532 6.5 (5.5, 7.5) N ¼ 119 <0.01

PSG, polysomnography.
a Statistical significance of t-test.

Fig. 1. Trajectory groups characterizing total sleep patterns throughout the first two years of life.
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Fig. 2. Trajectory groups characterizing nighttime sleep patterns throughout the first two years of life.

Fig. 3. Trajectory groups characterizing daytime sleep patterns throughout the first two years of life.
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approximately 7.1 h asleep during the day at threemonths and 2.8 h
asleep during the day at 24months.

3.1.4. SDB trajectories between 3 and 24months
Participants were categorized into four groups using the tra-

jectory analysis (see Supplementary Fig. S1): ‘No SDB’, ‘Late-onset
SDB’, ‘Early-onset SDBwith decline’, and ‘Persistent SDB’. The y-axis
of Supplementary Fig. S1 represents the proportion of participants
with a positive SRBD in that category at that time-point. The
description of the SDB trajectories including factors associated with
each trajectory is detailed separately [35].
3.2. Cognitive development at two years of age (primary outcome)

3.2.1. Univariate analyses
Univariate analyses are presented in Supplementary Table S1.

Neither SDB trajectories based on the 22-item SRBD scale, nor
children considered to have SDB based on a positive SRBD ratio at
two years of age, were significantly associated with cognitive
development at two years of age in univariate analyses. PSG mea-
sures [sleep efficiency, apneaehypopnea index (AHI), and desatu-
ration index] were not significantly associated with cognitive
development at two years of age. Categorizing participants with
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SDB based on an AHI greater than 1.5, 5 or 10 were not associated
with cognitive development.

3.2.2. Multivariate analyses
Compared to children with intermediate total sleep durations,

short sleepers had a 5.2-point lower cognitive development score
at two years of age (SE 1.7; p¼ 0.002). Neither decline to short sleep
duration children, or long sleep duration children had a significant
difference in cognitive development. Children born prior to
36.5weeks had a 10.4-point lower BSID-III cognitive score
compared to children born after 36.5weeks (SE 3.3; p ¼ 0.001).
Children with short total sleep duration continued to have a lower
cognitive score at two years of age when controlling for cognitive
development at one year of age.

The nighttime sleep trajectory resulted in a superior model fit,
based on the lower BIC, compared to daytime sleep models
(Table 3). Nighttime sleep trajectories predicted cognitive devel-
opment even when controlling for concurrent total sleep duration
at two years of age. Short nighttime sleep was associated with a
10.1-point decrease in cognitive development at two years of age
(SE 2.2; p < 0.001); while intermediate sleep was associated with a
3.7-point decrease in cognitive development (SE 1.2; p < 0.01)
compared to children in the long sleep group (reference). Children
Table 3
Multivariate regression analysis for cognitive development at twoyears of age.

Variable Total sleep

r2 0.19

Trajectories Coefficient (S

Total sleep Intermediate sleepers (ref.)
Short sleepers �5.2 (1.7)
Decline to short sleepers �1.6 (1.6)
Long sleepers �0.3 (1.4)
Missing sleep data �5.7 (13.4)

Nighttime sleep Long sleepers (ref.)
Short sleepers
Intermediate sleepers
Missing sleep data

Daytime sleep Decrease to short (ref.)
Intermediate sleepers
Short sleepers
Decrease to intermediate sleepers
Missing sleep data
Categorical
Male (ref.)
Female 3.8 (1.1)
Caucasian (ref.)
Non-caucasian �3.6 (1.2)
Missing ethnicity data 3.5 (4.3)
Maternal not smoking during pregnancy (ref.)
Maternal smoking during pregnancy �6.7 (3.1)
Missing pregnancy smoking data �1.9 (2.1)
Season of birth: Winter (ref.)
Spring 1.9 (1.6)
Summer �3.4 (1.6)
Fall �4.9 (1.6)
Born after 36.5 weeks gestational age (ref.)
Born prior to 36.5 weeks gestational age �10.4 (3.3)
Individual completing BSID-III testing:
Research coordinator (ref.)
Research assistant 1 �10.8 (9.4)
Research assistant 2 5.4 (1.5)
Research assistant 3 �9.8 (3.5)
Research assistant 4 2.1 (2.8)
Research assistant 5 �1.6 (1.4)
Continuous
Breastfeeding duration 0.3 (0.1)
Missing breastfeeding data �4.5 (1.9)
Total sleep duration at two years �0.1 (0.6)
Missing sleep duration at 24months data 1.7 (1.8)

BIC, Bayesian information criterion; SE, standard error.
born between 34 and 36.5 weeks’ gestation had a 9.9-point lower
cognitive score (SE 3.2; p < 0.005) compared to children born after
36.5weeks gestational age. Each month of any breastfeeding was
also associated with a 0.3-point increase in cognitive development.
Children of mothers who smoked during pregnancy had a 6.0
(SE 3.0; p ¼ 0.05) lower cognitive composite score. Multivariate
analyses controlled for gender and ethnicity.

3.2.3. Sensitivity analyze
Short and intermediate nighttime sleepduration trajectorieswere

still significantly associated with reduced cognitive development at
two years of age in a sensitivity analysis including only participants
with complete data. Shorter nocturnal sleep duration was similarly
significantly associated with a reduced change in cognitive devel-
opment between one and two years of age. There was no significant
interaction between SDB and nighttime sleep trajectories.

3.3. Language development at two years of age (secondary
outcome)

3.3.1. Multivariate analyses
Compared to children with intermediate total sleep durations,

short sleepers had a 3.2-point lower language development score at
Model 1: nighttime sleep Model 2: daytime sleep

BIC: 4838 r2 0.20 BIC: 4860 r2 0.18

E) p Coefficient (SE) p Coefficient (SE) p

0.002
0.321
0.859
0.669

�10.1 (2.2) <0.001
�3.7 (1.2) 0.003
�7.2 (13.2) 0.584

�2.8 (1.5) 0.064
0.7 (1.4) 0.615
�2.8 (1.9) 0.129
�4.6 (13.4) 0.733

0.001 3.8 (1.1) <0.001 3.7 (1.1) 0.001

0.004 �2.8 (1.2) 0.027 �3.4 (1.2) 0.007
0.407 4.4 (4.2) 0.297 2.7 (4.3) 0.523

0.028 �6 (3) 0.046 �6.2 (3) 0.042
0.38 �0.9 (2.1) 0.658 �1.3 (2.1) 0.539

0.224 1.5 (1.6) 0.34 2 (1.6) 0.207
0.031 �3.8 (1.6) 0.014 �3.3 (1.6) 0.036
0.003 �5.2 (1.6) 0.001 �4.9 (1.6) 0.003

0.001 �9.9 (3.2) 0.002 �10.4 (3.3) 0.001

0.254 �9.7 (9.3) 0.298 �11.8 (9.4) 0.211
<0.001 5.5 (1.5) <0.001 5.5 (1.5) <0.001
0.005 �11.2 (3.5) 0.001 �9.9 (3.5) 0.005
0.451 0.1 (2.8) 0.967 0.8 (2.9) 0.768
0.255 �1.8 (1.4) 0.184 �1.9 (1.4) 0.181

0.001 0.3 (0.1) 0.002 0.3 (0.1) 0.002
0.017 �5.5 (1.9) 0.003 �4 (1.9) 0.035
0.796 �0.3 (0.5) 0.529 0.8 (0.5) 0.088
0.352 1.8 (1.8) 0.319 1.9 (1.8) 0.295
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two years of age (SE 1.75; p ¼ 0.03). Neither decline to short sleep
duration children, or long sleep duration children had a significant
difference in language scores. Similar to cognitive development,
children with short total sleep duration had a lower language score
at two years of age when controlling for language development at
one year of age.

The nighttime sleep trajectory resulted in a superior model fit
on language development, based on the lower BIC, compared to
daytime sleep models (Table 4) on language development. Children
with short nighttime sleep (�10.3, SE 1.8, p < 0.001; Table 3) and
intermediate night sleep (�2.8, SE 1.0; p < 0.01) had lower BSID-III
composite language scores compared to the long nighttime sleep
group. Children with persistent SDB symptoms had a 5.3-point
lower language score (SE 2.7; p ¼ 0.05) compared to those
Table 4
Factors associated with BSID-III composite language scores in multivariate analysis.

Variable Total sleep

r2 0.24

Trajectories Coefficien

Total sleep Intermediate sleepers (ref.)
Short sleepers �3.2 (1.5)
Decline to short sleepers �0.3 (1.3)
Long sleepers 0.2 (1.5)
Missing sleep data �8.1 (11.4

Nighttime sleep Long sleepers (ref.)
Short sleepers
Intermediate sleepers
Missing sleep data

Daytime sleep Decrease to short (ref.)
Intermediate sleepers
Short sleepers
Decrease to intermediate sleepers
Missing sleep data

SDB No SDB symptoms (ref)
Persistent SDB �6.2 (2.8)
Early SDB 0.3 (1.7)
Late SDB 2.4 (2)
Categorical
Male (ref.)
Female 5.3 (0.9)
Caucasian (ref.)
Non-caucasian �4.4 (1)
Missing ethnicity data �4.2 (3.5)
Maternal not smoking during pregnancy (ref.)
Maternal smoking during pregnancy �5.9 (2.5)
Missing pregnancy smoking data �3.1 (2.5)
Season of birth: Winter (ref.)
Spring 0.4 (1.3)
Summer �1.7 (1.3)
Fall �3.4 (1.3)
Born after 36.5 gestational age (ref.)
Born prior to 36.5 weeks gestational age �6.8 (2.7)
Individual completing BSID-III testing:
Research coordinator (ref.)
Research assistant 1 �5.4 (7.9)
Research assistant 2 4.7 (1.2)
Research assistant 3 1.5 (2.9)
Research assistant 4 6.9 (2.4)
Research assistant 5 1.4 (1.1)
Continuous
Breastfeeding duration 0.3 (0.1)
Missing breastfeeding data �4.3 (1.6)
Total sleep duration at two years 0.5 (0.5)
Missing sleep duration at 24months data 0.4 (1.5)
No family history of speech or language delay (ref)
Family history of speech or language delay �3.9 (1.2)
Missing family history of speech or language delay �0.1 (1.8)
Fruit during pregnancy 0.7 (0.3)
Missing fruit intake during pregnancy �2.5 (2.6)

SDB, sleep-disordered breathing.
children without SDB symptoms. Neither children with early- nor
late-onset SDB symptoms had a change in their language score.
A family history of language delay resulted in a 3.8-point decrease
in the language score compared to those children with no family
history of language delay (SE 1.2, p ¼ 0.001). Children of mothers
who smoked during pregnancy had a lower BSID-III language score
(�5.4, SE 2.4 p ¼ 0.03). Children born between 34 and 36.5weeks
gestational age scored 6.9 points lower compared to children born
after 36.5weeks gestational age (SE 2.6, p < 0.01). Each month of
breastfeeding was again associated with a 0.3-point increase in
language score (SE 0.08; p < 0.001). In a sensitivity analysis,
persistent SDB was still associated with a lower language score
when controlling for treatment for rhinitis with either nasal steroid
or saline rinse at 12 or 24 months of age.
Model 1: nighttime sleep Model 2: daytime sleep

BIC: 4616 r2 0.27 BIC: 4652 r2 0.24

t (SE) p-value Coefficient (SE) p-value Coefficient (SE) p-value

0.032
0.838
0.896

) 0.479

�10.3 (1.8) <0.001
�2.8 (1) 0.007
�10.1 (11.1) 0.363

�0.7 (1.2) 0.545
�0.4 (1.1) 0.736
�2.6 (1.5) 0.084
�8 (11.4) 0.485

0.026 �5.3 (2.7) 0.052 �6.6 (2.8) 0.019
0.836 �0.1 (1.6) 0.955 0.5 (1.7) 0.751
0.243 1.3 (2) 0.525 2.3 (2) 0.25

<0.001 5.4 (0.9) <0.001 5.2 (0.9) <0.001

<0.001 �3.3 (1) 0.001 �4.1 (1) <0.001
0.231 �2.8 (3.5) 0.417 �4.7 (3.5) 0.181

0.019 �5.5 (2.4) 0.025 �5.6 (2.5) 0.025
0.209 �2.5 (2.4) 0.31 �2.9 (2.5) 0.24

0.758 �0.1 (1.3) 0.954 0.5 (1.3) 0.714
0.196 �2.2 (1.3) 0.084 �1.7 (1.3) 0.182
0.012 �3.8 (1.3) 0.005 �3.5 (1.4) 0.011

0.011 �6.9 (2.6) 0.009 �6.8 (2.7) 0.011

0.491 �3.5 (7.7) 0.655 �6.6 (7.9) 0.407
<0.001 4.9 (1.2) <0.001 4.7 (1.2) <0.001
0.604 0.3 (2.8) 0.918 1.3 (2.9) 0.663
0.005 5.2 (2.4) 0.031 6.2 (2.5) 0.013
0.215 1.3 (1.1) 0.246 1.3 (1.1) 0.267

0 0.3 (0.1) 0 0.3 (0.1) 0
0.006 �5.3 (1.5) 0 �4.2 (1.6) 0.007
0.252 0.1 (0.4) 0.787 1 (0.4) 0.014
0.808 0.5 (1.4) 0.71 0.4 (1.5) 0.78

0.001 �3.9 (1.2) 0.001 �3.9 (1.2) 0.001
0.945 0.3 (1.8) 0.885 �0.3 (1.8) 0.878
0.015 0.6 (0.3) 0.018 0.7 (0.3) 0.011
0.339 �2.3 (2.5) 0.359 �2.6 (2.6) 0.312
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4. Discussion

Using data from a population-representative birth cohort study,
we found that children with short total sleep duration had lower
cognitive and language development to two years of age. Nighttime
sleep duration resulted in better explanation of cognitive and lan-
guage development than daytime sleep duration. Short and inter-
mediate nighttime sleep duration across the first two years of life
displayed significantly lower cognitive and language development
scores at two years of age in comparison to infants who had long
nighttime sleep durations. Children with persistent SDB symptoms
had a lower language score compared to those children without
SDB symptoms. SDB was not associated with cognitive develop-
ment. Each month of any breastfeeding was also associated with
increased cognitive and language development.

Short sleep duration has been associated with a wide range of
adverse health outcomes [36]. A recent meta-analysis found that
short sleep duration between 0 and 4 years of age was associated
with obesity and worse emotional regulation. The association
between short sleep duration and adverse cognitive development
was unclear from the longitudinal studies included in the meta-
analysis. Children with longer sleep duration had higher general
conceptual ability at three years [37]. Conversely, total sleep dura-
tion was not associated with executive functioning or working
memory in a separate study. However, children with higher pro-
portions of total sleep occurring at nighttime performed better on
executive tasks [5,38]. These results highlight the importance of
nighttime sleep as a component of total sleep duration.

Our results are consistent with the literature supporting a pos-
itive association between nighttime sleep duration and cognitive
outcomes in preschool children. Increasing nighttime sleep is
positively correlated with improved attention among toddlers [6]
and improved executive functioning outcomes at four years of age
[5]. Good-quality nighttime sleep has been shown to improve
children's memory for word learning [1] whereas poor sleep
consolidation at 6 and 18months was found to be associated with
stable or late-onset language delays by five years of age. Three
sleep-duration patterns were identified among children aged
2.5e6 years of age, (short persistent duration, short increasing
duration, 10-h persistent duration) [39]. Children with short sleep
duration showed lower cognitive measure scores [39].

We found an association between persistent SDB phenotype and
language but not cognitive development at two years of age. The
association between SDB and language delay may be the result of
(1) both SDB and language delay being associated with rhinitis and
otitis media, and (2) language acquisition being more sensitive to
sleep disruption. The relationship between SDB and language delay
may be the result of confounding by rhinitis. Otitis media has been
associated with language delay among pre-school children [40]
while rhinitis has been associated with otitis media [41e43]. We
have shown that rhinitis is associated with all three SDB symptom
trajectories [35]. In a sensitivity analysis, persistent SDB was still
associated with a lower language score when controlling for
treatment for rhinitis at 12 or 24months of age. Additionally, the
first two years of life are the most intensive period for language
acquisition, a skill interdependent with cognitive development
[44]. Our findings may indicate that higher-level processes, such as
language, are more sensitive to interruption by SDB than the core
cognitive processes on which language is constructed.

Childhood SDB may represent multiple overlapping phenotypes
distinguished by age of onset and duration of symptoms. Not all
SDB phenotypes may be associated with cognitive impairment.
Treatment for SDB symptoms, not systematically recorded as part
of the study record, may limit our ability to determinewhether SDB
is associated with adverse cognitive development. Future studies
will examine the impact of persistent SDB and later-onset child-
hood SDB on neurodevelopment in childhood.

The CHILD sample size provides a high degree of power to
differentiate the impact of daytime versus nighttime sleep and the
co-contributing role of SDB on cognitive development. We used
objective measures of infant sleep and sleep disruption to help
validate parental reports. Quarterly measures of sleep quality and
quantity allowed for trajectory modeling of infant sleep patterns as
well as SDB patterns throughout the first two years of life. The
CHILD study allowed assessments of many potential confounders
associated with the development of cognition, including breast-
feeding duration and family socioeconomic status (SES).

The observational nature of our study precludes us frommaking
causal associations between sleep duration and cognitive devel-
opment. Although our analyses excluded children with known
neurodevelopmental delays, children with low and intermediate
nighttime sleep durations may have undetected or undetermined
neurodevelopment abnormalities that predispose them to lower
cognitive performance. Our study was not designed to determine
the mechanism by which sleep duration is associated with cogni-
tive development. Finally, the trajectory models for SDB, daytime,
nighttime and total sleep are based on sleep and symptom esti-
mates captured via parental report completed quarterly during the
first two years of life. The error introduced via parent-report esti-
mates may have reduced our ability to detect some associations
between sleep duration or SDB and cognitive outcomes.

Home-based PSG has not been validated as a measure of SDB
symptoms in children. Similarly, the PSQ has not been validated for
children under two-years of age.We chose to present bothmethods
of assessing children for the presence of SDB symptoms (PSQ and
home PSG) as in-hospital PSG (the gold standard) was not feasible
for this study. Formal reliability assessments of the PSG scoring
were not performed.

Future research may identify factors associated with each of the
sleep duration trajectories identified. Isolated bed sharing and
breastfeeding were associated with sleep duration among infants
from 6 to 18months [12]. We were not able to perform trajectory
analyses on cognitive development as the BSID-III was completed
at only two time points. Multiple assessments of cognitive devel-
opment from six months to two years of age would allow re-
searchers to pinpoint the specific age at which reduced nighttime
sleep affects cognitive performance outcomes.

5. Conclusion

To our knowledge, this is the first study to assess cognitive
development during the first two years of life in relation to phe-
notypes of SDB, daytime, nighttime, and total sleep duration. Short
total sleep duration was associated with lower cognitive and lan-
guage development to two years of age. Nighttime sleep had a
greater impact on cognitive and language development compared
to daytime sleep. Infants with low and intermediate nighttime
sleep duration throughout the first two years of life have reduced
cognitive and language outcomes at two years in comparison to
long-sleeper infants. Persistent SDB was associated with language
but not cognitive development. Future research is required to
determine the directionality of the association between nighttime
sleep and cognitive development as well as the mechanism(s)
responsible for this association.
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