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Abstract

Changes in maternal innate immunity during healthy human pregnancy are not well under-

stood. Whether basal immune status in vivo is largely unaffected by pregnancy, is constitu-

tively biased towards an inflammatory phenotype (transiently enhancing host defense) or

exhibits anti-inflammatory bias (reducing potential responsiveness to the fetus) is unclear.

Here, in a longitudinal study of healthy women who gave birth to healthy infants following

uncomplicated pregnancies within the Canadian Healthy Infant Longitudinal Development

(CHILD) cohort, we test the hypothesis that a progressively altered bias in resting innate

immune status develops. Women were examined during pregnancy and again, one and/or

three years postpartum. Most pro-inflammatory cytokine expression, including CCL2,

CXCL10, IL-18 and TNFα, was reduced in vivo during pregnancy (20–57%, p<0.0001). Anti-

inflammatory biomarkers (sTNF-RI, sTNF-RII, and IL-1Ra) were elevated by ~50–100%

(p<0.0001). Systemic IL-10 levels were unaltered during vs. post-pregnancy. Kinetic

studies demonstrate that while decreased pro-inflammatory biomarker expression (CCL2,

CXCL10, IL-18, and TNFα) was constant, anti-inflammatory expression increased progres-

sively with increasing gestational age (p<0.0001). We conclude that healthy resting mater-

nal immune status is characterized by an increasingly pronounced bias towards a systemic

anti-inflammatory innate phenotype during the last two trimesters of pregnancy. This is

resolved by one year postpartum in the absence of repeat pregnancy. The findings provide

enhanced understanding of immunological changes that occur in vivo during healthy human

pregnancy.
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Introduction

For healthy pregnancy to proceed to term, changes need to occur to prevent immune mediated

rejection of the semi-allogenic fetus. At the same time, the immune system must maintain, or

enhance, protection of mother and fetus from external pathogens. There is extensive literature

concerning immunity at the maternal-fetal interface and its role in progression of fetal devel-

opment [1–5]. Similarly, many studies have examined pathologic conditions that can arise

during pregnancy (i.e. preeclampsia, infection, hypoxia), often with small, cross-sectional,

healthy control groups for comparison.

Surprisingly, healthy pregnancy that leads to healthy infants has not been a major research

focus and is not well understood. Publications [6] and recent NIH workshops [7, 8] identify

the need for better insight into the biology of normal pregnancy. Attention needs to be given

to (i) understanding maternal adaptations and (ii) creating a biological definition of an opti-

mal pregnancy phenotype from fetal, maternal and paternal standpoints. Understanding puta-

tive changes in women’s in vivo innate immune status during normal pregnancy–the healthy

phenotype–will strengthen efforts to understand linkages between in vivo maternal status and

the subsequent development of healthy vs. chronic inflammatory phenotypes such as asthma

or autoimmunity in children, or their mothers, later in life [9–13].

The changes, if any, that occur in innate immune status during a healthy pregnancy are

controversial. Existing evidence supports several mutually exclusive conclusions. Some data

are consistent with the concept that basal maternal systemic immunity exhibits a mild bias

towards inflammatory phenotypes (hence, transiently enhancing host defense). Others support

the notion that immunosuppressed phenotypes (reducing potential responses to the fetus)

are normally dominant during pregnancy [14]. A third school of thought argues that innate

immune function is largely unchanged in pregnant and non-pregnant women [3, 15].

Interest in healthy pregnancy is driven by at least three other rationales. Exclusion of preg-

nant women from clinical research, while well intentioned, can be counterproductive [7].

Their inclusion requires better understanding of maternal health norms during healthy preg-

nancy. Secondly, identifying and understanding differences in basal innate immune status in
vivo during healthy pregnancy will provide better understanding of mechanisms that underlie

difficult pregnancies [15]. Finally, with extensive efforts to link systemic innate immunity in
vivo and clinical outcomes later in life for both mother and fetus [16, 17], we need to better

define immunity in healthy human pregnancy as the entry point to childhood.

The Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort was initi-

ated to study the development of allergy and asthma, with a strong focus on clinical, immuno-

logic and environmental assessments of infants and parents. The 3,624 participating infants

and families are predominantly from urban centres; over 80% of the Canadian population is

urban. The cohort is multicultural and ethnically varied. Its value is enhanced by extensive

phenotyping of both children and parents, characterization of their environments and an

extensive repository of biological samples [18].

Here we test the hypothesis that resting systemic pro-/anti-inflammatory bias in vivo is

transiently shifted during pregnancy. In this longitudinal study of 251 randomly selected

healthy women who gave birth to healthy infants, pairwise comparisons were used to assess

innate immune biomarker levels in vivo during the second/third trimester then again at one

and three years postpartum. An extensive panel of pro-inflammatory cytokines that are consti-

tutively present in most healthy individuals (CCL2, CXCL10, CXCL8, IL-18, IL-6, and TNFα)

was examined. While studies of inflammatory processes often include few or no anti-inflam-

matory regulators, endogenous levels of a broad panel of anti-inflammatory cytokines (IL-10,

IL-1Ra, sTNF-RI, and sTNF-RII) were incorporated to provide a better immune signature of
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women’s health during successful pregnancy. The data reveal that extensive changes occur in
vivo. Healthy pregnancy is linked to development of a constitutive systemic anti-inflammatory

maternal bias that becomes increasingly intense with increasing gestational age, then self-

resolves by one year postpartum.

Materials and methods

Participants

The Canadian Healthy Infant Longitudinal Development (CHILD) Study is a prospective

national population-based longitudinal birth cohort of 3,624 neonates (http://www.

canadianchildstudy.ca/knowledge.html) [18]. Following written, informed consent, non-

fasting venous blood was obtained at the University of Manitoba recruitment site to yield

plasma samples from 499 women. Median age at recruitment was 31.1 years. Women were

recruited between conception and delivery, as possible, with most recruitment taking place

during the second and third trimester. Inclusion criteria included uneventful pregnancy

without documented concerns about hypertension, proteinuria or gestational diabetes that

resulted in a healthy singleton baby. Exclusion criteria included in vitro fertilization (IVF),

twins, miscarriage, intrauterine growth restriction (IUGR), clinically discernible upper respi-

ratory tract (URT) or gastrointestinal (GI) infection within a week of study visit or repeat

pregnancy evident at or within two months following one year and three year postpartum

visits. This study was approved by the University of Manitoba Human Research Ethics

Board.

To increase power, rather than incorporating unrelated non-pregnant female controls, a

longitudinal study design was used where a woman’s status during pregnancy was compared

with her own at subsequent times. Samples were obtained once at initial recruitment (a visit

between gestational weeks 10–38) and again one year postpartum. Major clinical characteris-

tics of the women studied are provided in Table 1.

251 of the mothers for whom paired plasma samples were available from prenatal (PN) and

one year post-partum (1YPP) time points (n = 331) were randomly selected for analysis of in
vivo pro- and anti-inflammatory cytokine expression (CCL2 and sTNF-RI). These biomarkers

were chosen because published, and our own preliminary data, demonstrated that readily

quantified levels are evident in >95% of healthy individuals (cf. IL-6 or IL-10 where a substan-

tial proportion of healthy individuals exhibit sub pg/ml plasma levels). For more extensive

analyses, 8 additional in vivo biomarkers were determined using approximately every second

individual (n = 120) from the original study group. Investigators were blind to any immuno-

logical data at the time of randomization and sample selection.

Table 1. Demographic and clinical characteristics of study population.

No. of Women in Study 251

Maternal Age at Delivery (years) 31.1 (18.4–43.2)

Gestational Age at PN Visit (weeks) 27.0 (9.9–38.4)

Gestational Age at Delivery (weeks) 38.0 (35.0–42.1)

Maternal Tobacco Use 5%

Preeclampsia 0% (excluded)

Gestational Diabetes Mellitus (GDM) 0% (excluded)

Values are presented as median (range) or as a percentage of the total population.

https://doi.org/10.1371/journal.pone.0177813.t001
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Among women who provided plasma samples at both one and three years post-partum,

(and who did not experience pregnancy in the interim) 32 were randomly selected to further

compare potential changes in selected plasma biomarker levels post-pregnancy (see Results).

Immunological assays

Samples were processed as described [19]. Briefly, whole blood samples were kept at room

temperature during transport and prior to processing later that day. Whole blood plasma was

collected from 10 mL sodium heparin Vacutainer tubes (BD, Mississauga, Canada) by centri-

fugation at 500g for 10 minutes, aliquoted and stored at -20˚C. Immediately prior to use in

immunological assays, thoroughly mixed plasma was subjected to a quick spin (500g, 1 min-

ute) to remove protein/lipid precipitate. Samples for pregnant and one year postpartum, or

one and three years postpartum, were analyzed as pairs on the same assay plates.

Meso Scale Discovery (MSD, Rockville, Maryland) singleplex assays were used to quantify

analyte concentrations following the manufacturer‘s instructions. Catalog numbers for the

reagent kits used are provided at Table 2.

For all assays, concentrations were determined based on standard curves created using

serial dilutions of fresh aliquots of constant recombinant lab standards prepared in culture

medium and stored at -80˚C in individual 400 uL aliquots (Cedarlane, Burlington, Canada;

PeproTech, Quebec, Canada; R&D Systems, Minneapolis, Minnesota). Longitudinal sample

sets from each individual were always paired on the same assay plates. Median intra-assay vari-

ation was typically below 5%.

Statistics

Group results are presented as medians, with each point representing the average (mean)

value obtained from duplicate or triplicate analyses of an individual woman’s plasma at that

timepoint. Supporting information S1 File contains the raw duplicates or triplicates used to

calculate the mean values for each cytokine or chemokine, for each woman, at each visit,

under each condition examined, that were then used to create the figures presented. Data for

each population were analyzed using GraphPad Prism (La Jolla, California). Pairwise compari-

sons (Wilcoxon Matched Pairs/Signed Rank tests) were used for most data sets. The Spearman

rank order correlation coefficient (non-parametric) was used to assess potential associations

between plasma biomarker levels and increasing gestational age. Differences were considered

significant at the 95% confidence level (two-tailed p<0.05).

Table 2. Catalog numbers for Meso Scale Discovery kits used in this publication.

Cytokine MSD Catalog Number

CCL2 K151AYB-2

CXCL8 K151ANB-2

CXCL10 K151NVD-2

IL-6 K151AKB-2

IL-10 K151AOB-2

IL-18 K151MCD-2

IL-1Ra N45ZA-1

sTNF-RI K151BIC-2

sTNF-RII K151BJB-2

TNFα K151BHB-2

https://doi.org/10.1371/journal.pone.0177813.t002
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Results

Alterations in basal innate immune balance are characteristic of healthy

human pregnancy

This longitudinal study aimed to determine whether the constitutive immune status of healthy

pregnant women exhibits a pro- or anti-inflammatory bias and whether it changes during

pregnancy. As described in detail at Material and Methods, plasma samples were obtained at a

single time point during pregnancy, again one year postpartum, and for a randomly obtained

subset of individuals who did not experience further pregnancies in the interim, at three years

postpartum. Two representative biomarkers of pro- and anti-inflammatory responses were

assessed initially (Fig 1). Pro-inflammatory chemokine CCL2 was readily detectible in all indi-

viduals. Among the 251 women examined, systemic CCL2 was found to be reduced by 40%

during pregnancy compared to levels one year postpartum (p<0.0001, Wilcoxon matched

pairs, medians 110 vs. 154 pg/mL). Conversely, sTNF-RI was 38% elevated during pregnancy

(medians 1,266 vs. 913, p<0.0001). Thus, the median ratio of these anti-inflammatory:pro-

inflammatory innate biomarkers (sTNF-RI:CCL2) changed from 11.4 during pregnancy to 5.9

a year following delivery. This suggests that constitutive maternal status may incline towards

an anti-inflammatory balance over the course of pregnancy.

Given the large number of pro- and anti-inflammatory cytokines and inhibitors involved in

human immune regulation, this analysis was extended in approximately every second woman

(n = 120) to a panel of five additional pro-inflammatory biomarkers (CXCL10, TNFα, IL-18,

IL-6 and CXCL8) as well as three more anti-inflammatory biomarkers (IL-10, sTNF-RII and

IL-1Ra). The cytokines selected were chosen on the basis of being (i) routinely present in the

plasma of healthy humans and (ii) having been extensively implicated in immune regulation

of inflammation in murine and human studies. These large panels of biomarkers were used in

preference to relying upon a single biomarker (CRP or IL-6 or IL-10, as is commonly done) in

order to strengthen the capacity to draw conclusions about pro- vs. anti- inflammatory bias in
vivo during pregnancy. A brief overview of the major cellular sources and biological functions

of the cytokines, chemokines and receptors studied is provided in Table 3.

Fig 2 demonstrates that during healthy pregnancy, most pro-inflammatory cytokines were

indeed reduced relative to levels in the same women one year postpartum. Thus, constitutive

CXCL10, TNFα and IL-18 were reduced during pregnancy. Median IL-6 trended lower by 42%,

but the difference did not reach statistical significance. There was no evidence of changes in con-

stitutive CXCL8 levels during healthy pregnancy. Note that due to the inherent immunological

Fig 1. Among healthy women, a systemic bias towards a resting anti-inflammatory phenotype is

evident in vivo during pregnancy. Paired plasma samples from 251 women are assessed during and one

year following healthy pregnancy. Data are presented as pg/mL. Bars represent median values of each data

set. Wilcoxon paired analyses are shown.

https://doi.org/10.1371/journal.pone.0177813.g001
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Table 3. Cytokine, chemokine and soluble receptor biomarkers examined in this publication.

Cytokine Major Sources Major Functions Major role as a Pro- or Anti-

Inflammatory immune

response modifier

CCL2

(MCP-1)

Macrophages, monocytes, endothelial cells,

fibroblasts, epithelial cells, smooth muscle cells,

mesangial cells, astrocytic cells, monocytic and

microglial cells [20].

CCL2 recruits monocytes, memory T cells, and

dendritic cells to sites of inflammation [21–23]. It has

been Implicated in pathogenesis or exacerbation of

many inflammatory diseases including asthma,

atherosclerosis, gestational diabetes mellitus,

hypertension and rheumatoid arthritis [24, 25].

Pro-Inflammatory

CXCL8

(IL-8)

Macrophages, monocytes, epithelial cells, airway

smooth muscle cells and endothelial cells [26, 27].

CXCL8 is an inflammatory chemokine involved in

neutrophil (and other granulocyte) recruitment/

chemotaxis towards sites of infection and subsequent

phagocytosis/ degranulation [27]. It is also a potent

promoter of angiogenesis [28–30].

Pro-Inflammatory

CXCL10

(IP-10)

Macrophages, monocytes, endothelial cells and

fibroblasts [31].

CXCL10 is involved in chemoattraction for monocytes/

macrophages, T cells, NK cells, and dendritic cells [32,

33]. It is also involved in the promotion of T cell

adhesion to endothelial cells, enhances Th1 activity

and has antitumor activity [32–35].

Pro-Inflammatory

IL-6 Macrophages, monocytes, T cells, endothelial cells,

placental cells and adipocytes [20, 35, 36].

In response to infection (e.g. viruses, bacteria) or

trauma (e.g. surgery, burns, tissue damage), IL-6 is

secreted and stimulates inflammation [37]. It is an

important mediator of fever, the acute phase response,

neutrophil production in bone marrow, supports B cell

growth and is antagonistic to regulatory T cells [35].

Clinically, it stimulates inflammatory processes in host

defense and many diseases including diabetes [38],

atherosclerosis [39], depression [40], Alzheimer’s [41],

systemic lupus erythematosus [42], multiple myeloma

[43], prostate cancer [44], and rheumatoid arthritis [45].

Pro-Inflammatory

IL-10 Macrophages, monocytes, T cells, B cells, NK cells,

mastocytes and adipocytes [20, 46, 47].

IL-10 inhibits T cell derived cytokine production, MHC

class II and co-stimulatory molecule expression, and

enhances B cell survival, proliferation, and antibody

production [48–52]. It inhibits TLR mediated induction

of multiple pro-inflammatory cytokines including TNFα,

IL-1β, IL-12, and IFNγ [46, 47].

Anti-Inflammatory

IL-18 Macrophages, monocytes, dendritic cells,

endothelial cells, keratinocytes and intestinal

epithelial cells [53, 54].

IL-18 induces cell-mediated immunity following

infection with microbial products (e.g. LPS) [53]. IL-18

stimulation of NK and T cells stimulates IFNγ release,

activating macrophages and other cells [55–57].

Pro-Inflammatory

IL-1Ra Macrophages, monocytes, neutrophils, mast cells,

epithelial cells and adipocytes [46, 54, 58–60].

IL-1Ra inhibits the activities of pro-inflammatory

cytokines IL-1α and IL-1β, modulating IL-1 related

immune and inflammatory responses [58, 61–63].

Anti-Inflammatory

sTNF-RI Macrophages, monocytes, T cells, B cells, NK cells,

dendritic cells, endothelial cells and epithelial cells

[46, 54, 64].

sTNF-RI is generated by the shedding of its

membrane-expressed counterpart (TNF-RI) [65]. Thus,

sTNF-RI has inherent anti-inflammatory activity, as it

competes with membrane-associated receptors for the

binding of free cytokines, confining the pro-

inflammatory cytokine activity to the local site of

inflammation [65, 66].

Anti-Inflammatory

sTNF-RII Macrophages, monocytes, T cells, B cells, NK cells,

dendritic cells, endothelial cells and epithelial cells

[46, 54, 64].

sTNF-RII is generated via shedding of a membrane-

expressed counterpart (TNF-RII) [65]. As for sTNF-RI,

it competes with membrane-associated signaling

receptors for the TNF binding, confining the pro-

inflammatory cytokine activity to the local site of

inflammation [65, 66], it has inherent anti-inflammatory

activity.

Anti-Inflammatory

TNFα Macrophages, monocytes, T cells, NK cells,

neutrophils, mast cells, eosinophils and neurons [20,

67].

TNFα is a major player in chronic and acute

inflammation [67, 68]. It also inhibits tumorigenesis and

viral replication [67]. TNFα dysregulation has been

implicated in a broad variety of human inflammatory

diseases [68, 69].

Pro-Inflammatory

https://doi.org/10.1371/journal.pone.0177813.t003
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diversity characteristic of human populations, and to avoid compression of clearly positive but

low levels of cytokine expression in some individuals, y-axis breaks are included.

Anti-inflammatory biomarkers (sTNF-RI, sTNF-RII, and IL-1Ra) demonstrated that unlike

the reductions seen in constitutive pro-inflammatory cytokine expression, anti-inflammatory

biomarker levels were elevated during pregnancy (Figs 1 and 3, p<0.0001). Interestingly,

Fig 2. Basal levels of multiple pro-inflammatory innate biomarkers are reduced in vivo during healthy

pregnancy. n = 120 longitudinal sample pairs. Bars represent median values of each data set. Wilcoxon

paired analyses are shown.

https://doi.org/10.1371/journal.pone.0177813.g002

Fig 3. Constitutive expression of multiple anti-inflammatory biomarkers is increased during

pregnancy. n = 120 longitudinal sample pairs. Bars represent median values of each data set. Wilcoxon

paired analyses are shown.

https://doi.org/10.1371/journal.pone.0177813.g003
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plasma IL-10, readily quantified in ~85% of the population, did not differ. Taken together,

the data suggest that healthy pregnancy is characterized by transiently decreased pro-, and

increased anti-inflammatory expression. This self-resolves by one year postpartum.

Validity of one year postpartum as a surrogate for the non-pregnant state

It is not logistically feasible to recruit women one year prior to an anticipated conception in

order to assess their then basal systemic immune status. We therefore addressed the possibility

that one year postpartum does not allow sufficient time for the innate immune system to return

to the non-pregnant status, hence is not an appropriate comparison group. 32 randomly

selected women who remained non-pregnant over the two years following the one year post-

partum visit were examined. At this year three visit, plasma samples were obtained and com-

pared (at the same time, in parallel assays) with plasma obtained from the same women at one

year postpartum. One pro- and one anti-inflammatory biomarker that had exhibited differen-

tial expression during pregnancy (CCL2 and IL-1Ra) and one pro- and one anti-inflammatory

biomarker that had been unchanged during pregnancy (CXCL8 and IL-10) were examined. Fig

4 demonstrates that the level of each cytokine was stable within an individual at one and three

years post-pregnancy. This supports the concept that one (or three) year postpartum samples

offer an appropriately stable comparator for non-pregnant status in this longitudinal study.

Anti-inflammatory bias is evident at least as early as the second

trimester

The comparisons above test the hypothesis that resting constitutive innate immune status is

distinct during healthy pregnancy. To better understand the kinetics of this shift in resting

immune status, the population was next stratified by trimester of recruitment. With only a

small number of women recruited during the first trimester, analysis centred on the second

Fig 4. Stability of in vivo pro- and anti-inflammatory plasma biomarkers. n = 32 longitudinal sample

pairs. Wilcoxon paired analyses are shown.

https://doi.org/10.1371/journal.pone.0177813.g004
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and third trimesters. Fig 5 demonstrates basal (i.e. healthy, resting) innate immune status is

skewed towards an anti-inflammatory phenotype at least as early as the second trimester.

The intensity of anti-inflammatory bias increases with increasing

gestational age

Finally, to determine if the intensity of anti-inflammatory phenotypic changes are altered with

the progression of pregnancy, we assessed relationships between plasma biomarker concentra-

tions and gestational age. sTNF-RI, IL-1Ra (Fig 6) and sTNF-RII (not shown) all exhibited

increasingly intense in vivo expression with increased gestational age. Conversely, the decrease

in pro-inflammatory cytokine expression (Fig 6: CCL2 and IL-18; data not shown: CXCL8,

CXCL10, IL-6 and TNFα) was constant and exhibited no relationship with increasing gesta-

tional age. Thus, the shift towards an increasingly anti-inflammatory bias intensified with

increasing gestational age during healthy pregnancy.

Fig 5. Longitudinal analysis of differences in pro- and anti-inflammatory cytokines in second and

third trimesters. Independent panels of volunteers were examined during the second or third trimester and

compared with levels one year postpartum. Bars represent median values of each data set. Wilcoxon paired

analyses are shown.

https://doi.org/10.1371/journal.pone.0177813.g005

Fig 6. Relationships between gestational age and intensity of anti-inflammatory or pro-inflammatory

plasma biomarker expression. Spearman regression analyses are shown.

https://doi.org/10.1371/journal.pone.0177813.g006
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Discussion

Although most pregnancies lead to healthy infants, prior research has focused heavily on dis-

eases of pregnancy. Here, maternal health was examined in 251 healthy pregnant women over

up to three years. The data reveal that at least as early as the second trimester, women exhibit

increasingly strong constitutive expression of anti-inflammatory mediators and reduced

expression of many, but not all, cytokines linked to host defense and inflammatory immune

capacity. This transient anti-inflammatory phenotype intensifies with increasing gestational

age and is self-resolving by one year postpartum.

Our primary focus here is maternal health and the systemic, constitutive innate immune sta-

tus exhibited by women during pregnancy. This is not an investigation of factors which enable

pregnancy to become established, to proceed to term, or to respond to acute viral or bacterial

infection. There is a longstanding lack of agreement regarding constitutive innate immune sta-

tus during a healthy pregnancy. Small cohorts of healthy pregnant women are incorporated in

most studies that examine diseases of pregnancy. In those studies, cross-sectional comparisons

are drawn with a broad range of difficult pregnancies, rather than explicitly using well-powered

longitudinal study designs to examine the status of healthy women during vs. post-pregnancy.

Not surprisingly, such studies do not provide a clear consensus. One school argues that systemic

immune status in vivo, unlike immune status at the maternal/fetal interface, reflects a general-

ized mild inflammatory response [70–73]. Others argue for the dominance of anti-inflamma-

tory responses [74, 75]. These apparent contradictions may be due to cross-sectional study

designs, cohorts of relatively small size, the resulting impact of subject to subject variability, and

reliance on a small number of biomarkers (often one) to assess innate immune bias in vivo. For

example, two of the largest longitudinal studies available [76, 77] are composed of 48 and 21

healthy women respectively who are followed through pregnancy and postpartum. Many stud-

ies involve different ethnicities: Kraus included a 94% Hispanic/Black population [76], while

Szarka utilized a Caucasian population [78]. As pointed out more than two decades ago [79],

due to high inter-subject variability inherent to any outbred population, a longitudinal,

matched study design involving a large n is logistically challenging, but highly important.

This research has important caveats. Firstly, because a longitudinal, multi-year study design

was selected to achieve increased sensitivity, it was not socially or logistically feasible to recruit

individuals prior to an anticipated pregnancy. For this reason, pregnant women were com-

pared with their immune status at one year and, for a subset, three years postpartum. Pre-preg-

nancy immune status could not be directly determined. Secondly, a potential confounder that

cannot be ruled out is the impact of specific environmental antigens and pathogens on these

findings. Women with complicated pregnancies with known linkages to altered innate immu-

nity (i.e. preeclampsia) are excluded from this study. Among the women studied, clinical

assessments at each blood draw excluded women with active transient URT or GI infections.

The data reported above, characterizing the constitutive in vivo phenotype of healthy normal

pregnancy positions us to better assess the impact of environmental and genetic influences in

pregnancy in subsequent studies. A third caveat is that the impact of menstrual stage postpar-

tum at sampling could influence some values obtained. This underlines the need for sufficient

power because the impact of such variables is increasingly reduced as the number of individu-

als examined increases.

A potential confounder to interpretation of the data obtained was day-to-day stability of

biomarker expression within a given individual. We found this to have minimal impact

because, as shown in Fig 4, and as was previously reported in short-term studies conducted in

men and non-pregnant women [76, 80], systemic levels of most biomarkers are remarkably

stable across time (days-weeks) in healthy individuals.
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The immunological and clinical implications that result from the increasingly pronounced

anti-inflammatory phenotype that developed over the course of healthy pregnancy remains

speculative. Extensive literature demonstrates associations between pro-inflammatory or type

1 cytokines and recurrent spontaneous miscarriage or preterm delivery. Exogenous TNFα and

IFN inhibit the outgrowth of human trophoblasts in vitro and induce apoptosis of human vil-

lous trophoblast cells. Murine studies demonstrate that administration of pro-inflammatory

cytokines (i.e. TNFα, IFN, IL-2) into pregnant mice causes increased abortion. Conversely,

administration of IL-10 prevents fetal wastage in abortion-prone mice [81, 82]. Thus, there is

consensus that controls on excessive pro-inflammatory innate responses are essential for suc-

cessful pregnancy [75].

These data may stand in contrast to in vivo expression of acute phase proteins during

healthy pregnancy. Multiple studies have found increased plasma/serum CRP levels vs. non-

pregnant controls [83–86]. The extent to which changes in this largely IL-6 and TNFα driven

biomarker of inflammation are due to activation of classical innate immune responses or

other cells (i.e. adipocytes or necrotic processes associated with placenta ageing) is under active

investigation [83, 87, 88]. Interestingly, several groups have found undetectable changes or

decreases in CRP over the course of healthy pregnancy [83, 89–92]. This inconsistency, and

the many pregnancy independent factors (i.e. obesity) that can influence CRP levels, under-

lines a need for caution and continued research prior to drawing mechanistic conclusions

about the role any of these mediators play in successful conclusion of pregnancy.

In this study, we do not address putative differences in maternal immune responses upon

infection in vivo or acute in vitro activation. Studies examining in vitro responses to various

pattern recognition receptor (PRR) ligands are currently underway as a complementary

approach to understanding changes in maternal health that can occur during pregnancy.

With increasing attention given to defining what constitutes a healthy pregnancy [93], this

study provides valuable insight into systemic innate immune changes that result in expression

of an increasingly intense anti-inflammatory phenotype in vivo during pregnancy. It under-

lines the need for further characterization of what constitutes a successful environment for

healthy human pregnancy.
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