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Abstract Archaea are widespread and abundant in soils,
oceans, or human and animal gastrointestinal (GI) tracts.
However, very little is known about the presence of Archaea
in indoor environments and factors that can regulate their
abundances. Using a quantitative PCR approach, and
targeting the archaeal and bacterial 16S rRNA genes in floor
dust samples, we found that Archaea are a common part of the
indoor microbiota, 5.01±0.14 (log 16S rRNA gene copies/g
dust, mean ±SE) in bedrooms and 5.58 ± 0.13 in common
rooms, such as living rooms. Their abundance, however,
was lower than bacteria: 9.20±0.32 and 9.17±0.32 in bed-
rooms and common rooms, respectively. In addition, by mea-
suring a broad array of environmental factors, we obtained
preliminary insights into how the abundance of total archaeal
16S rRNA gene copies in indoor environment would be asso-
ciated with building characteristics and occupants’ activities.

Based on the results, Archaea are not equally distributed with-
in houses, and the areas with greater input of outdoor
microbiome and higher traffic and material heterogeneity tend
to have a higher abundance of Archaea. Nevertheless, more re-
search is needed to better understand causes and consequences of
this microbial group in indoor environments.
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Introduction

The biology and ecology of the third domain of life, Archaea,
have been studied far less when compared to the other do-
mains including bacteria and eukarya. Archaea are microor-
ganisms discovered in the late 1970s [1]. For years after their
discovery, scientists believed that archaea were restricted to
extreme environments, such as deep-sea hydrothermal vents,
hypersaline waters, or strictly anoxic ecosystems [2].
Development of culture-independent molecular techniques
and high-throughput molecular sequencing approaches trans-
formed this belief by illustrating their presence, often with
high abundance and diversity, in terrestrial and aquatic envi-
ronments [3–5], animal care facilities [6–8], deteriorated me-
dieval wall paintings [9], as well as the human and animal
microbiome such as gastrointestinal (GI) tracts [10–14] and
human oral cavities [15]. However, the presence of archaea in
many other ecosystems has still been investigated scarcely and
our understanding of their role in their habitat is limited.

One such overlooked ecosystem is the indoor built envi-
ronment. There is significant ongoing interest in better under-
standing the Bbuilt environment microbiome^ [16], with a
focus on characterizing microbial diversity as well as the en-
vironmental parameters that would drive its patterns [16–26].
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Nevertheless, most of the past studies on the indoor
microbiome considered mainly bacteria [16, 17, 27–30] and,
to a lesser degree, fungi [19, 20, 23, 25, 31, 32]. Here, we used
culture-independent molecular approaches to study the archaea
in indoor dust from homes in the so-called BminiCHILD^
study, which is a preliminary cohort of 54 homes in the
Vancouver area recruited to assist in the optimization and val-
idation of data collection tools for the larger Canadian Healthy
Infant Longitudinal Development (CHILD) study [33, 34]. We
sought to answer three general questions: (1) Are archaea reg-
ular components of built environment microbiomes? If yes, (2)
what would be their magnitude compared to indoor bacteria?
And (3) how would building characteristics and occupants’
activities relate to the variation of archaeal abundances?

Material and Methods

Sample Collection

Between May 2008 and May 2009, trained research assistants
collected dust from the homes of families with newborn chil-
dren using a sterile, depyrogenated custom-designed alumi-
num collection device attached to the end of a vacuum cleaner
(Model S3680, Sanitaire Canister Vac, Charlotte, NC, USA).
The collection device held two nylon DUSTREAM filters
(Indoor Biotechnologies Inc, Charlottesville, VA). Two dust
samples were collected in each house; the first sample was a
composite of the mattress and floor in the room where the
subject child slept, and the second sample was collected from
the floor of the room occupied most often by the family. A
standardized floor area was initially sampled (2 m2), and if
insufficient dust was obtained, the sampling area was expand-
ed. Research technicians visually observed the thimbles after
vacuuming 2 m2; if the thimbles were less than half-full, the
technician continued vacuuming in a new area of the room
until the required amount was met. The exact size of the
vacuumed area was recorded for all samples taken. Samples
were then fractionated using a sterile depyrogenated 100
Mesh sieve (∼150 μm), and the fine fraction transferred to a
sterile depyrogenated borosilicate glass vial with a Teflon-
lined screw cap (VWR 1 dram glass vial, West Chester, PA)
and stored at −80 °C until analysis.

DNA Extraction and Quantitative PCR Analyses

Total DNA was extracted from 100 mg of collected fine dust
samples using a FastDNA® SPIN Kit for Soil (MP
Biomedicals, LLC, Solon, OH, USA), which was selected sys-
tematically by using the Order Preference by Similarity to Ideal
Solution (TOPSIS) method [35] as the most optimum extrac-
tion kit for dust samples in the present case study. Subsequently,
extracted DNA samples were checked for integrity by agarose

gel electrophoresis with Lambda DNA HindIII Digest stan-
dards (New England BioLabs, Ipswich, MA, USA), and their
quantities were measured using the QuantiFluor® dsDNA
System (Promega, Madison,WI, USA). The purity of extracted
DNA samples was evaluated by measuring each sample’s ratio
of the optical density at 260 and 280 nm using the NanoVue
Plus™ spectrophotometer (GE Healthcare, Buckinghamshire,
UK), before preserving them at −20 °C. Abundances of both
archaeal and bacterial 16S rRNA gene copy numbers were
measured by quantitative PCR (qPCR); using A364aF (5′
CGGGGYGCASCAGGCGCGAA 3′) and A934bR (5′
GTGCTCCCCCGCCAATTCCT 3′) primers for archaea [36]
and BACT1369F (5′ CGGTGAATACGTTCYCGG 3′) and
PROK1492R (5′ GGWTACCTTGTTACGACTT 3′) for bac-
teria [37]. Although the abundance of 16S gene sequences is
not a surrogate measure of the relative abundance of the ar-
chaeal and bacterial cells containing those sequences (because
of variations in genomic copy number of the 16S gene in
microbial species), in the rest of this manuscript for the sake
of brevity, 16S rRNA gene copy numbers will be referred to as
archaeal/bacterial abundances.

All PCR amplifications were carried out in a CFX96
Touch™ Real-Time PCR Detection System (BioRad, Ontario,
Canada) and each PCR reaction mixture (20 μL) contained
10 μL of SsoFast™ EvaGreen® Supermix (Biorad, Hercules,
CA), 1.5 μL of 1000 μg/μL T4 gene 32 protein (Biolabs,
Ipswich, MA), 0.4 μM of each primer, nuclease-free water
(IDT, Coralville, IA, USA), and 2 μL of extracted DNA
(5 ng/μL). Thermal-cycling conditions for 16S archaea were
as follows: 95 °C for 2 min for the enzyme activation, 40 cycles
of 95 °C for 30 s (denaturation), and 61.5 °C for 30 s (annealing
and extension), followed by 1 cycle of melting analysis (65–
95 °C (0.1 °C/2 s)). These conditions for 16S bacteria included:
95 °C for 2 min for the enzyme activation, 40 cycles of 95 °C
for 30 s (denaturation), and 56 °C for 30 s (annealing and
extension), followed by 1 cycle of melting analysis (65–95 °C
(0.1 °C/2 s)).

Standard curves were obtained using three replicates of
1:10 serial dilutions of linearized plasmids containing both
cloned archaeal and bacterial 16S rRNA sequences, giving a
concentration range from 10 to 106 copies/μL. Amplification
efficiencies of 92.2–94.7 % (R2 > 0.985) and 90.1–105.8
(R2 >0.963) were observed for archaeal and bacterial stan-
dards, respectively. Finally, melting curve analyses at the
end of all qPCR runs and agarose gel running of qPCR prod-
ucts were performed to check for amplification and specificity
of the products.

Collection of Environmental Variables and Statistical
Analyses

We monitored and recorded 668 housing characteristics as
well as building inhabitant activities by using standardized
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questionnaires and direct on-site visits for the purpose of sta-
tistical analyses. An exhaustive list of these factors has been
described in recent publications [33, 34], and a subset is
shown in Table 1. The questionnaire was comprised of ques-
tions on the location, history, and characteristics of the unit,
such as basic house dimensions, construction details of the
building envelope, furniture materials, and finishes for interior
designs; the occurrence of factors which could influence mois-
ture sources and air change as well as number, type, and ac-
tivities of the occupants.

Statistical analyses were performed in PRIMER 7 and
STATICTICA 12 [38, 39]. Regarding the first two questions

(listed in the Introduction), the abundance of archaeal and bac-
terial genes in bedrooms versus the most used rooms were first
plotted (in log scale) to illuminate the indoor archaeal abun-
dance relative to that of bacteria. Subsequently, a Wilcoxon
matched pairs test was used to investigate whether or not there
is a significant statistical difference between total archaeal
abundances in different types of rooms. Then, for the third
question of the study, the BEST (Bio-Env) routine, namely
BVSTEP, was used to determine which of 668 environmental
factors and resident activities Bcollectively^ best explain the
overall variation in archaeal total abundances in both room
types. Subsequently, the significance of the BEST analysis

Table 1 Sub-sample of 668 collected environmental factors

Building design characteristics Type and density of occupants Occupants’ activities

Age of ceiling Number of adults in the house Frequency of bathroom fan usage

Age of floor Number of children in the house Frequency of house cleaning

Age of house Number of plants Frequency of keeping the child bedroom’s window
open

Basement condition Number of visitors/day Frequency of keeping the most used room’s
window open

Basement dampness Presence of long-hair cats Hanging clothes inside the house

Basement foundation Presence of long-hair dogs Presence of stuff toys

Child room area (sq. m) Presence of short-hair cats Type of vacuum

Child room carpet area (sq. m) Presence of short-hair dogs Usage level of gas fireplace

Child room wall cover Presence of plants Usage level of radiators

Child room window cover Presence of moth in house Use of chemical spray and cloth

Cleanliness of basement Presence of mouse in house Use of garden sprays/weed killers

Condensation on bedroom Windows in cooler
weather

Presence of pets Use of mop

Evidence of leak in the house Furniture and equipment Use of unscented or scented candles

Finished basement or added insulation Number of pieces of leather Use of antibacterial hand cleaner

Floor level Number of pieces of metal Use of broom

Furnace age Number of pieces of solid woods Use of chemical sprays for cleaning

Furnace condition Number of plastic/vinyl furniture

Most used room area (sq. m) Number of press wood furniture Use of disinfectants

Most used room carpet area (sq. m) Presence of air conditioning system Use of feather duster

Number of rooms in the house Presence of electronic devices Use of floor cleaners

Presence of garage Presence of humidifier Use of glass cleaners

Type of garage Presence of stove fan in kitchen Use of liquid or solid air fresheners

Presence of swimming pool Outdoor related Use of multi-surface cleaners

Presence of upgraded plumbing system Geographic distance Use of oven cleaners

Total volume of the house Is the house within 100 m of: Body of
water

Use of plug-in deodorizers

Type of flooring Factory Use of plumbing cleaners

Type of foundation Farm Use of scented laundry detergents

Type of fuel in the house Gas station Use of spray air fresheners

Type of furnace’s filter Major highway/artery Use of toilet bowl cleaners

Type of garage Other source of pollution Use of vacuum

Type of house Neighbor currently doing renovations Use of wet cloth (water only) for cleaning

Type of insulation Use of swiffer wet jet
Type of lawn

Type of wall covering
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result was validated through a permutational null distribution to
ensure that the selected combinations of environmental vari-
ables were not obtained by chance. Univariate data analyses,
namely Mann-Whitney (for two-level categorical factors),
Kruskal-Wallis (for multi-level categorical variables), and
Spearman Correlation tests (for numerical variables) were next
employed to explore which individual screened environmental
variable would be relatively more associated with the variation
of archaeal abundances.

Results

Archaeal abundances varied between 5.01± 0.14 (log 16S
rRNA gene copies/g dust, mean±SE) in bedrooms and 5.58
±0.13 in the most used rooms. However, these magnitudes
were notably lower than indoor bacteria, which were between
9.20±0.32 in bedrooms and 9.17±0.32 in the most used rooms
(Fig. 1). When we compared sample pairs (bedroom and the
most used room of the same houses), a significant difference
was detected between their archaeal abundances (Wilcoxon
matched pairs test, p=0.04), with higher abundance occurring
in the most used rooms (Fig. 1a). However, no similar indica-
tion was found for the indoor bacteria (Fig. 1b). Subsequently,
by using the BEST procedure, we found that almost 55 % of
variation of total magnitudes of indoor archaea can be ex-
plained by 15 and 21 out of 668 environmental factors in bed-
rooms and the most used rooms, respectively (Table 2). When
the relative effect size of screened factors by BEST for bed-
rooms was estimated individually, however, only Buse of elec-
tric dryer, vented outdoors^ (Mann-Whitney U test, p=0.005)
remained significant and negatively associated with the total
abundances of bedrooms’ archaea (Fig. 2a). Association of this

factor was also noted in the most used rooms, albeit to a lesser
degree (p=0.06, Table 2 and Fig. 2b). Moreover, most used
rooms’ archaeal abundances were significantly associated with
the presence of upgraded plumbing systems (p=0.029), hang-
ing wet clothes inside the house (p=0.031), and the use of
liquid or solid air fresheners (p=0.032). In particular, it was
found that the presence of an upgraded plumbing system
(Fig. 2c) and hanging wet clothes inside the house (Fig. 2d)
was negatively correlated with the total abundance of archaea in
the most used rooms. In contrast, the use of liquid or solid air
fresheners was positively associated with the total abundance of
archaea in the most used rooms (Fig. 2e).

Discussion

Wehave demonstrated the presence of archaea in the house dust
and the influence of selected indoor characteristics on archaeal
abundance. These data may add to the existing knowledge that
archaea are not only present in extreme environments with
physical limits for biological systems [1, 2], but they are also
broadly distributed and abundant in moderate environments [3,
7, 15, 40–44]. The latter can include Methanomicrobiales and
Thermoplasmatales in freshwater and marine habitats [45],
Crenarchaeota and Thaumarchaeota in soil [45, 46], and
methanogens in the human and animal intestinal tracts [10–14].

Earlier studies have shown that archaea comprise a signifi-
cant proportion of microbes in soil and pelagic ocean waters,
with a ratio of archaea/bacteria around 1:10 [46, 47]. In floor
dust, we observed a much smaller archaeal contribution with a
ratio of archaea/bacteria around 0.02:10 in bedrooms and
0.06:10 in the most used rooms. One of the explanations might
be that we used fine dust particles for sampling, while it
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has been suggested that archaeal traces are mostly pre-
sent in coarse particles [48]. The fact that archaea were less
numerous in indoor dust may also indicate that the indoor

archaeal assemblages are mostly allochthonous (passive en-
trants of archaeal traces such as Halobacteriales,
Thermoplasmatales, and the members of Thaumarchaeota

Table 2 Environmental and
behavioral factors that best
explain variation of the total
archaeal abundance in bedrooms
and the most used rooms

Screened factors by BESTa

Bedroom The most used room

Numeric Numeric

Room area (sq. m) Number of plastic or vinyl furniture

Number of plastic or vinyl furniture

Number of press wood furniture

Number of leather furniture

Categorical Categorical

Do they take off shoes when enters the unit Age of floor

Is there a private child room Basement condition

Occurrence of condensation on windows in cooler weather Basement foundation

Presence of humidifier Hanging wet clothes inside the house

Presence of long hair cat Presence of air conditioning system

Presence of stuff toys Presence of garage

Type of furnace’s filter Presence of plants in home

Type of window’s covering Presence of plastic or vinyl covered furniture

Use of Electric dryer, vented outdoors Presence of short hair cat

Use of gas fire place Presence of stove fan in the kitchen

Use of swiffer wet jet Presence of swimming pool

Presence of upgraded plumbing system

Use of antibacterial hand cleaner

Use of broom

Use of floor cleaners

Use of electric dryer, vented outdoors

Use of liquid or solid air fresheners

Use of oven cleaners

Use of scented laundry detergents

Use of vacuum

aMulti-factor analyses: All factors are collectively responsible for 55.1 % (p = 0.03) and 56.3 % (p = 0.02)
variation of total abundance of archaea in bedrooms and the most used rooms, respectively
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[48] brought inside along with the fresh air through windows
and ventilation systems or on the shoes and clothing of inhab-
itants). This is in contrast to the indoor bacterial assemblages,
which are a mixture of both allochthonous and autochthonous
assemblages (live and active inhabitants of dust). In addition,
we found that archaea, within houses, are not equally distribut-
ed and the most used rooms had significantly higher total
archaeal abundances than bedrooms (Fig. 1a). This may be
because of the higher human traffic and a greater input of out-
door archaea propagated indoors through open windows, on
footwear, or other items brought inside.

Within each room type, the total abundance of archaea
varied, depending on different environmental factors. For
example, the use of an electric clothes dryer, vented out-
doors was negatively correlated with the total abundance
of archaea (Fig. 2a, b). One of the explanations might be
that every time a laundry load is dried, some archaea may
be removed from the indoor environment through exhaust
fans, and hence, the neighboring areas in the house would
contain lower amount of these microorganisms. In addi-
tion, we found that in houses where wet clothes were
hung inside (Fig. 2d), the total abundance of archaea
was lower. This could be because when clothes are hung
indoors to dry (as opposed to outdoors), the indoor envi-
ronment may have lower input of outdoor air and thus a
lower input of airborne archaea.

Finally, in addition to outdoor sources, some specific
indoor sources may contribute to the abundance of indoor
archaea. For example, the use of liquid or solid air fresh-
eners inside houses was positively associated with the total
abundance of archaeal sequences (Fig. 2e). One explana-
tion may be that archaeal traces are embedded in the raw
materials and additives of air fresheners and, hence, dis-
tributed into the indoor environment upon freshener usage.
Also, houses with old plumbing systems showed higher
levels of archaea (Fig. 2c), likely because of the accumu-
lation of archaeal biofilm [49, 50] inside the plumbing
system where biofilm-forming species can survive, release,
and disperse into the indoor environment.

In summary, this study provides evidence that archaea are
present in household dust, and their abundances may be asso-
ciated with the physical building characteristics, occupant
activities, and product use. The results may be further used
to form the basis of intervention studies assessing the causality
between factors and total abundance of indoor Archaea, diver-
sity of the indoor archaeal community by using throughput-
sequencingmethods, as well as studies focusing on determining
association of the indoor archaeal community with human
health and disease. Better understanding of indoor microbial
diversity can eventually provide more awareness into the role
of environment as a determinant of health, particularly in rela-
tion to non-infectious diseases in which inflammatory media-
tors are believed to be important.
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