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Abstract

Background: The infant gut is rapidly colonized by microorganisms soon after birth, and the composition of the
microbiota is dynamic in the first year of life. Although a stable microbiome may not be established until 1 to
3 years after birth, the infant gut microbiota appears to be an important predictor of health outcomes in later life.

Methods: We obtained stool at one year of age from 173 white Caucasian and 182 South Asian infants from two
Canadian birth cohorts to gain insight into how maternal and early infancy exposures influence the development
of the gut microbiota. We investigated whether the infant gut microbiota differed by ethnicity (referring to groups
of people who have certain racial, cultural, religious, or other traits in common) and by breastfeeding status, while
accounting for variations in maternal and infant exposures (such as maternal antibiotic use, gestational diabetes,
vegetarianism, infant milk diet, time of introduction of solid food, infant birth weight, and weight gain in the
first year).

Results: We demonstrate that ethnicity and infant feeding practices independently influence the infant gut
microbiome at 1 year, and that ethnic differences can be mapped to alpha diversity as well as a higher abundance of
lactic acid bacteria in South Asians and a higher abundance of genera within the order Clostridiales in white Caucasians.

Conclusions: The infant gut microbiome is influenced by ethnicity and breastfeeding in the first year of life. Ethnic
differences in the gut microbiome may reflect maternal/infant dietary differences and whether these differences are
associated with future cardiometabolic outcomes can only be determined after prospective follow-up.
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Background
The developing gastrointestinal microbiota in the first
years of life is important for immune function, nutrient
metabolism and protection from pathogens [1–3]. Mi-
crobial colonization of the infant gut proceeds through
infancy and establishment of an adult-like microbiome is
estimated to occur within the first 3 years [4]. Identifying
factors that shape the gut microbiome is currently an ac-
tive area of research and early evidence suggests that
host genetics [5] and early life exposures, including

delivery method, antibiotics [6, 7], and diet, influence
the infant gut microbiome [8, 9]. In addition to these
established roles, the gut microbiota is emerging as a po-
tentially important contributor to the development of
non-communicable diseases (NCDs), having been associ-
ated with conditions such as obesity [10, 11], type 2 dia-
betes [12, 13], allergy and atopy [14], inflammatory
bowel disease [15], and the development of colon cancer
[16]. The influence of the infant microbiome on the de-
velopment of these conditions is of great clinical and
economic interest as rates of NCDs in adults are in-
creasing globally and by 2030 are predicted to account
for 89% of all deaths in high income countries [17].
South Asians are people whose ancestors originate

from the Indian subcontinent and they have among the
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highest rates of type 2 diabetes and premature cardio-
vascular disease (CVD) in the world. CVD risk factors,
including adiposity, type 2 diabetes, and dyslipidemia,
are higher among South Asians compared to white Cau-
casians of the same BMI [18]. There is preliminary evi-
dence that gut microbial composition in adults and
children varies by age [4, 19], dietary intake [20, 21], eth-
nicity, geography [4, 22], and adoption of western life-
styles [19, 23]. Bacterial richness has been shown to
increase with age and to be lower in residents of the
United States compared with other populations [4]. Core
bacterial metabolic genes varied between these popula-
tions as well; however, the underlying reasons for ethnic
and geographic differences in the microbiome have not
been characterized. In this paper we investigate the asso-
ciations of ethnicity and early life exposures with the gut
microbiome among 1-year-old infants born and living in
Canada while accounting for a diverse set of covariates
that represent dietary differences as well as other expo-
sures throughout infancy. This study explores the effect
of ethnicity separately from region and provides a pre-
liminary look at effects of ethnicity on the gut micro-
biota in early life.

Methods
Cohorts
Participants from two prospective Canadian birth co-
horts were included in this gut microbiome substudy.
The Canadian Healthy Infant Longitudinal Development
study (CHILD) enrolled 3624 mainly white Caucasian
mother–child pairs and most fathers from four Canadian
centers (Vancouver, BC; Edmonton, AB; Winnipeg/
Winkler-Morden, MB; and Toronto, ON) to investigate
the root causes of allergy and asthma, including genetic
and environmental triggers, and the ways in which they
interact [24–26]. In this analysis, ethnicity refers to
groups of people who have certain racial, cultural, reli-
gious, or other traits in common, whereas race refers to
a person’s physical characteristics, such as bone struc-
ture, or skin, hair, or eye color [27, 28]. In the CHILD
cohort, white Caucasian ancestry was confirmed by par-
ticipants’ response to the question “To which ethnic or
cultural group did your parents belong?” The South
Asian Birth Cohort (START-Canada) enrolled 1012
South Asian mother–child pairs from the Brampton and
Peel Region of Ontario to investigate the influence of di-
verse environmental exposures and genetics on early life
adiposity, growth trajectory, and cardiometabolic factors
[29]. South Asian ethnicity was verified by the mother’s
self-report of her and the father’s, and their parents’, an-
cestral origin being from India, Pakistan, Sri Lanka, or
Bangladesh.
Harmonization of clinical data across cohorts was

done by extracting them with the same definitions,

where possible. When questions were not identical, we
worked to extract the data from each cohort in such a
way as to satisfy the same definition. Gestational dia-
betes mellitus was defined as having diabetes on the
birth chart but no diabetes prior to pregnancy. A child
was considered to have had formula in the first year if
formula use was recorded at any time in the first year
(from several questionnaires). In both cohorts, timing of
infant weighing at 1 year was typically performed on the
same day as 1-year stool collection (r2 > 0.93; median =
0 days; 95% confidence interval 0 to 2 days).
In this gut microbiome substudy, 1-year fecal samples

from 173 white Caucasian infants in CHILD and 182
South Asian infants in START were used for the main
analysis. An additional 77 samples from the CHILD co-
hort, from infants who are not white Caucasian, were
used to explore trends found in the main analysis. For
both cohorts, the collection of 1-year fecal samples was
scheduled with the mother in advance. Stool collection
was taken from a regular diaper in START and a spe-
cially lined diaper in CHILD [24]. Mothers were
instructed to record the time and date of the stool sam-
ple and place it in a sterile bag in the refrigerator for
their scheduled appointment with the research nurse.
Upon arrival, the nurse used depyrogenized stainless
steel spatulas to divide the sample between four pre-
labeled cryovials. The cryovials were then transported to
the lab in a cooler, weighed, and stored at −80 °C or li-
quid nitrogen. START samples were stored at 4 °C for
2–4 h prior to freezing whereas CHILD samples were
stored at 4 °C for an average of 14 ± 12 h.

DNA extraction, 16S rRNA gene sequencing, and analysis
DNA was extracted with a custom DNA extraction proto-
col described in [30]. Briefly, 100–200 mg of stool was
added to 2.8 mm and 0.1 mm glass beads (MoBio Labora-
tories Inc., Carlsbad, CA, USA) along with 800 μl of
200 mM sodium phosphate monobasic (pH 8) and 100 μl
guanidinium thiocyanate EDTA N-lauroylsarkosine buffer
(50.8 mM guanidine thiocyanate, 100 mM ethylenedi-
aminetetraacetic acid, and 34 mM N-lauroylsarcosine).
These were then homogenized in a PowerLyzer 24 Bench
Top Homogenizer (MoBio Laboratories Inc.) for 3 min at
3000 RPM. Next, two enzymatic lysis steps were per-
formed. First, the sample was incubated with 50 μl of
100 mg/ml lysozyme, 500 U mutanolysin, and 10 μl of
10 mg/ml RNase for 1 h at 37 °C. Next, the sample was in-
cubated with 25 μl 25% sodium dodecyl sulphate, 25 μl of
20 mg/ml Proteinase K, and 62.5 μl of 5 M NaCl at 65 °C
for 1 h. Next, debris was pelleted in a tabletop centrifuge
at maximum speed for 5 min and the supernatant added
to 900 μl of phenol:chloroform:isoamyl alcohol (25:24:1).
The sample was then vortexed and centrifuged at max-
imum speed in a tabletop centrifuge for 10 min. The
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aqueous phase was removed and the sample run through
the Clean and Concentrator-25 column (Zymo Research,
Irvine, CA, USA) according to kit directions except for
elution, which was done with 50 μl of ultrapure water and
allowed to sit for 5 min before elution. The DNA was
quantified using a Nanodrop 2000c Spectrophotometer
[30]. Amplification of the bacterial 16S rRNA gene v3 re-
gion (150 bp) tags was performed as previously described
[31] with the following changes: 5 pmol of primer,
200 μM of each dNTP, 1.5 mM MgCl2, 2 μl of 10 mg/ml
bovine serum albumin, and 1.25 U Taq polymerase (Life
Technologies, Carlsbad, CA, USA) were used in a 50 μl
reaction volume. The PCR program used was as follows:
94 °C for 2 min followed by 30 cycles of 94 °C for 30 s,
50 °C for 30 s, and 72 °C for 30 s, then a final extension
step at 72 °C for 10 min. DNA extraction and PCR ampli-
fication of 16S rRNA gene v3 libraries were found to be
reproducible using a set of five samples from each cohort
(total of ten samples) that were extracted in triplicate (29
extractions since one extraction failed) and a subset of
three extractions from each cohort amplified in triplicate
for a total of 41 datasets (Additional file 1: Figure S1).
Illumina libraries were sequenced in the McMaster

Genomics Facility with 250-bp sequencing in the for-
ward and reverse directions on the Illumina MiSeq in-
strument. Custom, in-house Perl scripts were used to
process Illumina sequences as previously described [32].
Briefly, after sequence trimming and alignment, oper-
ational taxonomic units (OTU) were clustered using
AbundantOTU+ [33] with a threshold of 97%. Chimera
checking was not done since we have shown that ampli-
fication of the short V3 region of the 16S rRNA gene
leads to very few genuine chimeric sequences [34]. Tax-
onomy for the representative sequence of each OTU
was assigned using the Ribosomal Database Project clas-
sifier [35] with a minimum confidence cutoff of 0.8
against the Greengenes (2013 release) reference database
[36]. All OTUs classified as “Root:Other” (comprising
0.03% of the total reads sequenced) were then excluded
as was one sample with <500 sequenced reads; however,
singleton OTUs were not excluded. This resulted in a
total of 41.4 million reads with a minimum of 2.0 × 103,
maximum of 4.3 × 105, and a median of 9.0 × 104 reads
per sample.
Bacterial community richness and diversity (alpha

diversity) were calculated using the estimated species
richness and Shannon diversity functions with the
vegan package in R [37], using OTU abundances. Dif-
ferences between bacterial communities in each sample
(beta diversity) were quantified using the Bray–Curtis
dissimilarity measure on relative abundance values of
all bacterial genera and principal coordinate analysis
was also done using the vegan package or the phyloseq
package [38] in R.

Statistical Analysis
Simple linear regression was used to determine the effect
of ethnicity and breastfeeding on alpha diversity esti-
mates. Permutational multivariate analysis of variance
on Bray–Curtis dissimilarities of genus level relative
abundances, done with the adonis function from the
vegan package in R [37], was used to examine bacterial
community differences associated with ethnicity after
adjustment for potential covariates of ethnicity–micro-
biome associations.
Candidate covariates in the multivariable model were

informed by the existing literature and assessed formally
in univariable models against microbiome diversity (i.e.,
years mother lived in Canada, breastfeeding at time of
collection, time since weaning, formula and cow’s milk
use in the first year, time of introduction of solid foods,
infant weight gain in the first year, birth weight, infant
age at stool collection, and mode of delivery, gestational
diabetes, mother’s antibiotic use during pregnancy and
labor, and mother’s vegetarian status). Next, the candi-
date variables chosen above were used to separately pre-
dict dissimilarities with the same method as above.
Those with p < 0.10 were subjected to a forward stepwise
procedure. We then added the most significant covari-
ates into the model in order of the proportion of vari-
ance explained, and stopped when the next most
significant covariate was above the 0.05 threshold.
The association between genus level abundances and

ethnicity and/or breastfeeding was determined through a
multivariate algorithm adjusting for significant covariates
performed with the Maaslin package in R [39, 40].
Briefly, covariates found to be significant (p < 0.05) pre-
dictors of the microbiome (described above) were in-
cluded into a multivariate boosted, additive general
linear model between covariate data and bacterial genus
level abundances. P values were adjusted for multiple
testing with the false discovery rate, reported as q values,
and q < 0.05 was considered significant. Genera with a
coefficient of variation >0.001 were included in Add-
itional file 2: Table S1.

Results
Table 1 shows the baseline demographic and anthropo-
metric characteristics of the mothers and infants se-
lected from CHILD (white Caucasians only) and START.
Briefly, South Asian mothers lived in Canada for an
average of 8 years versus a lifetime for white Caucasian
mothers. Furthermore, South Asian mothers were youn-
ger, more likely to be vegetarian (34% versus 2%, p <
0.001), and to be diagnosed with gestational diabetes
during pregnancy (14% versus 4%, p < 0.001) compared
to white Caucasian mothers. There were no significant
differences in the rates of Caesarian section between eth-
nic groups (18% in South Asian versus 15% in white
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Caucasian); however, white Caucasian mothers were
more likely to receive antibiotics during pregnancy (8%
versus 0.5%, p < 0.001) and South Asian mothers were
more likely to receive antibiotics during labor (43% versus
34%, p < 0.05). South Asian infants were born earlier (39.1
weeks versus 39.5 weeks, p < 0.05), had lower birth weight
(3.3 kg versus 3.5 kg, p < 0.001), and gained more weight
in the first year of life (7.1 kg gained versus 6.4 kg gained,
p < 0.001) than did white Caucasian infants. While both
white Caucasian and South Asian mothers reported that
they breastfed their infants at some point during the first
year (97.1% versus 94.4%), a greater proportion of South
Asian infants were still breastfeeding at the time of 1-year
stool sample collection (43% versus 32%, p < 0.05).
Additionally, there was more formula use during the first
year (77% versus 65%, p < 0.001) and earlier introduction
of solid food among South Asians (88% versus 50% from 3
to 6 months, 9.4% versus 40% from 6 to 9 months, p <
0.001). We suspect that more South Asian infant diets
were vegetarian on account of the greater proportion of
their mothers who identified as vegetarian (34% versus
2%, p < 0.001). Furthermore, there was no difference in
age at time of stool collection (p = 0.39) between white
Caucasians (12.3 ± 1.71 months) and South Asians (12.4 ±
1.69 months; Table 1).

Abundance of microorganisms within all samples
The v3 region of 16S rRNA genes was profiled from 355
participant stool samples collected at 1 year of age, 173
white Caucasians from the CHILD cohort and 182 from
the START cohort. The range of alpha diversity esti-
mates for each ethnicity separated by current breastfeed-
ing at the time of sampling is illustrated in Fig. 1. Using
simple linear regression, species richness estimates were
found to be significantly affected by ethnicity after taking
into account breastfeeding at time of collection (p <
0.05). Shannon diversity was significantly affected by

Table 1 Mother and infant characteristics

White Caucasians South Asians P value

Maternal characteristicsa

Number per group 173 182

Maternal age in years (SD) 31.9 (4.13) 30.5 (4.03) 0.002#

Maternal height (cm) 166.3 (6.54)c 161.5 (6.54)b <0.001#

Maternal pre-pregnancy
BMI (if available)

24.6 (4.65)c 24.2 (4.51) >0.05#

Maternal weight gain 15.2 (5.73)f 15.3 (8.99)b >0.05#

Years mother lived in
Canada (SD)

29.5 (7.71)b 7.7 (5.96) <0.001#

Vegetarian status of
mother N (%)‡

4 (2.31%) 62 (34.07%)b <0.001*

Gestational diabetes
N (%)

7 (4.05%)b 26 (14.29%)b <0.001*

Mode of delivery N (%)

Vaginal 123 (82.00%)c 121 (78.57%) >0.05*

C-Section 27 (18.00%)c 33 (21.43%)

Antibiotics during pregnancy

Yes 14 (8.09%) 1 (0.55%) <0.001*

No 159 (91.91%) 181 (99.45%)

Antibiotics during labor

Yes 59 (38.06%)d 79 (45.40%)b 0.036*

No 96 (61.94%)d 95 (54.60%)b

Infant covariatesa

Currently breastfeeding
at sample collection N

Yes 56 (36.13%)b 78 (43.33%)b 0.036*

No 99 (63.87%)b 102 (56.67%)b

Breastfed in the first year

Yes 167 (97.1%)b 170 (94.4%)b >0.05*

No 5 (2.9%)b 10 (5.5%)b

Time since weaning in
months (SD)

5.6 (4.02)f 7.1 (5.85)f 0.045#

Currently using cow’s milk

Yes 68 (57.63%)e 121 (67.98%)b 0.019*

No 50 (42.37%)e 57 (32.02%)b

Currently using formula

Yes 47 (31.13%)d 72 (39.56%) 0.026*

No 104 (68.87%)d 110 (60.44%)

Formula in the first year

Yes 99 (63.06%)c 154 (90.06%)c <0.001*

No 58 (36.94%)c 17 (9.94%)c

Time in months of
introduction of solids

0–3 6 (4.03%)d 2 (1.11%)b <0.001§

3–6 75 (50.34%)d 159 (88.33%)b

6–9 66 (44.30%)d 17 (9.44%)b

9–12 2 (1.34%)d 2 (1.11%)b

Table 1 Mother and infant characteristics (Continued)

Birth weight in kg (SD) 3.5 (0.47)c 3.3 (0.48) <0.001#

Weight gain in the first
year in kg (SD)

6.4 (1.21)c 7.1 (1.31) <0.001#

Age of infant at time of
sample collection in
months (SD)

12.3 (1.71) 12.4 (1.69) 0.39#

Gestational age in weeks
(SD)

39.5 (1.33)b 39.1 (1.36) 0.006#

awhere there is no superscript there was no missing data
bLess than 5.00% data missing
cLess than 10.00% data missing
d10–20% data missing
e32% data missing
f40–50% data missing
*Fischer’s exact test
§Cochrane Armitage trend test
‡Maternal vegetarian status was used as a surrogate for infant diet exposure
#T-test
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ethnicity, taking into account breastfeeding at time of
collection (p < 0.001), and likewise breastfeeding at time
of collection within each ethnicity significantly affected
Shannon diversity (p < 0.05). Further, when START sam-
ples, all collected within the Brampton/Peel region of
Ontario Canada, were compared with each study center
within the CHILD cohort (Vancouver, Edmonton, Toronto,
and Winnipeg/Winkler-Morden) only Winnipeg/Winkler-
Morden, MB had significantly lower species richness esti-
mates (p < 0.05; Additional file 1: Figure S2). Although
there was variability in Shannon diversity estimates across
sample sites for CHILD, all sites were found to have signifi-
cantly lower diversity than the START samples (p < 0.05;
Additional file 1: Figure S2), while accounting for current
breastfeeding. By including sample sites into the regression
model the effect of current breastfeeding on Shannon di-
versity was no longer significant (p = 0.054).
Differences in the relative abundance of the dominant

bacterial genera are presented in Additional file 1: Figure
S3, broken down by ethnic group and breastfeeding status.
Heterogeneity of samples can be seen in Additional file 1:
Figure S3 as well as differences in genus level microbobial
profiles between ethnic groups and breastfeeding status,
differences that are explored in detail below.
Principal coordinate analysis of Bray–Curtis dissimilar-

ities illustrates between-community differences in sam-
ples from white Caucasians and South Asian infants.
Variation in the gut microbiome across geography has
been observed in studies involving adults [41]; however,
in our study the effect of ethnicity was larger than the
effect of geographic location (Fig. 2) shown as the separ-
ation of the centroid for samples from South Asians
from the centroids of samples from white Caucasians
from all study centers. Also evident from the principal
coordinate analysis, breastfeeding at time of collection
affected the gut microbial profiles, although when strati-
fied by currently breastfed and not currently breastfed
infants, the strong effect of ethnicity persisted (Fig. 2).
Several studies have found the infant gut microbiome to
vary between infants born by Caesarean section and
those born vaginally with the effect diminishing with
age. Here, delivery method was not found to be a signifi-
cant predictor of the structure of the gut microbiome in
1-year-old infants (Additional file 1: Figure S4). This may
be because differences were no longer strong enough to
be detected or because members of the phylum Bacteroi-
detes, often missing from the gut microbiome in Caesar-
ean section delivered infants, were not abundant in our
vaginally born infants (Additional file 1: Figure S2).

Association between ethnicity, milk diet, and solid food
diet
In addition to ethnicity, 13 potential covariates were also
associated with the microbiome in univariable regression

analysis. These included mother’s years living in Canada,
infant age, breastfeeding status at time of collection,
time since weaning, vegetarian status, timing of intro-
duction of solid foods, birth weight, infant weight gain
in the first year, antibiotics during pregnancy, antibiotics
during labor, formula use in the first year, formula use at
collection, and cow’s milk in the first year (all p < 0.10;
Table 2). We entered this set of covariates into a forward
stepwise regression model to determine which factors
remained significant and independently influenced the
gut microbiome. Only ethnicity (p < 0.001), breastfeeding
status (p < 0.001), infant age at stool collection (p < 0.01),
and weight gain in the first year (p < 0.01) remained in-
dependently associated with the gut microbiome as a
whole.
There was no statistically significant multiplicative

interaction between ethnicity and breastfeeding (p =
0.23). Nevertheless, we acknowledge that such tests may
be underpowered, and thus the results were also strati-
fied by ethnicity and breastfeeding status in order to
examine trends. Forward stepwise regression was con-
ducted within white Caucasians and separately within
South Asians (Table 3). This revealed that breastfeeding
(p < 0.01) and infant age (p < 0.05) were independently
associated with differences in the microbiome within
each ethnic group, while antibiotic use during labor (p <
0.05) and weight gain in the first year (p < 0.05)
remained independently associated with differences in
the microbiome only in white Caucasians. Forward step-
wise regression was also conducted separately within in-
fants breastfed and not breastfed at the time of
collection (Table 4), which indicated that ethnicity (p <
0.01) and the infant age (p < 0.05) remained independ-
ently associated with differences in the gut microbiome
in both groups.

Fig. 1 Alpha diversity measures within white Caucasians and South
Asians, split by breastfeeding status at the time of sample collection.
Whiskers extend to the most extreme data values up to 1.5× the
interquartile range; data outside this range are shown as circles
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Differentially abundant genera within each group
Difference in the relative abundance of the dominant
bacterial genera is presented as a taxa bar chart in Add-
itional file 1: Figure S2, broken down by ethnic group
and breastfeeding status. The relative abundance of indi-
vidual bacterial genera was assessed for association with
ethnicity and breastfeeding while accounting for infant
age and weight gain in the first year. These covariates,
which had survived the stepwise regression on the entire
community, were included in the multivariate algorithm
in order to strike a balance between overfitting the
model and identifying the most comprehensive list of
predictors. Taxa significantly associated with ethnicity,
breastfeeding at time of collection, infant weight gain in
the first year, and infant age (q value <0.05) are listed in
Additional file 2: Table S1 and their abundance is illus-
trated in Fig. 3.
South Asians had higher abundances of several genera

within the Actinobacteria (Bifidobacterium, Collinsella,
Actinomyces, Atopobium) and of three unclassified gen-
era compared to white Caucasians. Genera within the

phylum Firmicutes within two distinct taxonomic groups
were associated with ethnicity. Genera such as Strepto-
coccus, Enterococcus, and Lactobacillus (class Bacilli,
order Lactobacillales) were more abundant within South
Asians whereas genera such as Blautia, Pseudobutyrivi-
brio, Ruminococcus, and Oscillospira (order Clostri-
diales) were more abundant in white Caucasians. The
most differentially abundant genus were unclassified
members of the Lachnospiraceae which were higher in
white Caucasians. In order to investigate whether these
differences were specific to each cohort or were indica-
tive of true ethnic differences, five genera significantly
associated with either white Caucasians or South Asians
were plotted among the small number of South Asians
recruited within the CHILD cohort (n = 6 that were not
used for the previous microbiome analysis). Despite the
small number available, the same trends were seen for
the five genera plotted (Additional file 1: Figure S5).
Not surprisingly, breastfeeding status at the time

of sample collection was strongly associated with the
abundance of the genera Bifdobacterium (phylum

Fig. 2 Principal coordinate analyses (PCoA) of Bray–Curtis dissimilarities. Centroids for ethnicity, breastfeeding status at time of collection, and
study center are shown as circles with lines radiating to samples
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Actinobacteria; Fig. 3). Several genera within the
phylum Firmicutes were associated with breastfeeding at
the time of collection; some were more abundant (Veillo-
nella, Megasphaera, and Dialister) and others were less
abundant (Blautia, unclassified Lachospiraceae, Clostrid-
ium, Ruminococcus, Coprobacillus, Lactococcus, as well as
several unclassified genera within the Clostridiales and
Erysipelotrichales).

Discussion
Our results demonstrate that the gut microbiome of in-
fants is influenced by ethnicity, infant age, weight gain,
and breastfeeding. The gut microbiome has been pro-
posed to influence the progression of chronic diseases
and has been associated with adverse health outcomes
[42]. Development of the microbiome within the first
years of life may influence long-term health, and can be
affected by perinatal, genetic, and dietary factors, includ-
ing solid foods and milk diet.
The distribution of a number of maternal and infant

parameters differed between white Caucasian and South
Asians (i.e., vegetarian status, gestational diabetes melli-
tus prevalence, timing of introduction of solid foods,
antibiotic use during pregnancy, mode of delivery, etc.)
and thus seemed likely candidates to explain the micro-
biome differences by ethnicity. However, when these var-
iables were added as independent predictors of the gut
microbiome composition in the multivariable model,
none except breastfeeding status at the time of sampling,

infant age, and weight gain in the first year improved the
fit of the model (ethnicity R2 = 0.084 versus R2 = 0.082
with all additional variables; breastfeeding status R2 =
0.040 versus R2 = 0.032 with all additional variables).
This suggests that these variables were largely captured
by the higher order variables of interest, i.e., ethnicity
and breastfeeding. Next, after taking into account these
significant predictors (breastfeeding status, infant age at
1-year stool, and weight gain in the first year of life) we
found that groups of bacterial genera which are phylo-
genetically distinct (i.e., within the order Lactobacillales
versus Clostridales) were present at different abundances
within each ethnic group. This suggests that different
metabolic strategies are at work within the gut micro-
biome of South Asian and white Caucasian infants. Add-
itionally, these bacterial taxa are good candidates to
predict diet-related influences on the microbiome, mi-
crobial influences on host metabolism, and bacterial
stimulation of the host immune system [43].
Several members of the lactic acid bacteria (LAB), spe-

cifically Bifidobacterium, Lactococcus, Streptococcus, and
Enterococcus, were more abundant within South Asians
after taking into account breastfeeding status at the time
of collection, infant age, and weight gain in the first year.
LAB break down mainly carbohydrates that are not
absorbed by the host to produce acetate and lactate,
both of which are used as energy sources by other mi-
crobial groups [43, 44]. Also the abundance of members
of the Atopobium cluster of Actinobacteria (i.e., genera

Table 2 Univariable and multivariable permutational analysis of variance using Bray–Curtis dissimilarity matrices

Predictor variable Univariable Multivariable

F-Model R2 Pr(>F) F-Model R2 Pr(>F)

Ethnicity 32.61 0.084 0.001 32.21 0.084 0.001

Years in Canada 24.57 0.066 0.001 NAa

Infant age at time of sample collection 3.79 0.011 0.003 3.75 0.01 0.002

Breastfeeding at 1 year 14.28 0.040 0.001 12.75 0.033 0.001

Time since weaning 5.46 0.018 0.001 NA

Delivery mode 0.82 0.005 0.64 NA

Vegetarian status 10.45 0.029 0.001 NA

Gestational diabetes 1.49 0.004 0.16 NA

Antibiotics during pregnancy 2.07 0.006 0.04 NA

Antibiotics during labor 2.56 0.008 0.02 NA

Time of introduction of solid food 1.80 0.016 0.02 NA

Birth weight 3.09 0.009 0.006 NA

Infant weight gain in the first year 5.09 0.014 0.001 3.08 0.008 0.01

Formula at collection 1.05 0.004 0.36 NA

Formula in the first year 2.35 0.007 0.03 NA

Cow’s milk in the first year 1.85 0.006 0.06 NA

Multivariable model chosen by forward stepwise regression
aNot included as highly collinear with ethnicity
NA not applicable
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such as Collinsella and Atopobium) was higher in South
Asians. This group of bacteria are saccharolytic (i.e., they
break down small sugars) [45] and have been seen to de-
crease in abundance in the microbiome of individuals
with a diet rich in whole grains [46]. These genera have
also been associated with higher levels of low-density
lipoprotein in humans [47] and, along with other mem-
bers of the Actinobacteria, have been associated with
high hepatic levels of triglycerides and low hepatic levels
of glycogen and glucose in mice [48]. It is of interest to
note that these observations are based on v3 16S rRNA
gene data. Several studies of the infant gut microbiome,

which employ amplification and sequencing of other
variable regions of the same gene often report very low
levels of Actinobacteria [6, 9, 49]. Members of this
phylum, such as the Bifidobacteria, have been shown to
dominate the infant gut microbiome [4, 50, 51], suggest-
ing a possible primer bias against this group.
In contrast, white Caucasians showed higher abundances

of members of the Firmicutes from the order Clostridiales,
which have been shown to be increased in response to di-
ets rich in animal protein [52] and high in fat [53]. Prod-
ucts of bacterial fermentation of acetate and lactate,
mentioned above, as well as non-digestible fiber and

Table 3 Subgroup analysis based on ethnicity. Permutational analysis of variance using Bray-Curtis dissimilarity matrices

Predictor variable Univariable Multivariable

F-Model R2 Pr(>F) F-Model R2 Pr(>F)

White Caucasians

Breastfeeding 6.52 0.038 0.001 4.18 0.03 0.001

Time since weaning 2.81 0.020 0.007 NA

Age at time of sample collection 2.89 0.017 0.007 2.5 0.015 0.02

Delivery mode 0.98 0.012 0.48 NA

Antibiotics during pregnancy 0.52 0.003 0.86 NA

Antibiotics during labor 2.45 0.016 0.03 NA

Vegetarian status 2.33 0.013 0.02 NA

Gestational diabetes 0.85 0.005 0.52 NA

Time of introduction of solid food 1.12 0.023 0.32 NA

Formula at collection 1.23 0.009 0.26 NA

Formula in the first year 2.51 0.016 0.01 NA

Cow’s milk in the first year 1.29 0.01 0.23 NA

Weight gain in the first year 2.23 0.014 0.04 2.8 0.017 0.01

Birth weight 0.35 0.002 0.95 NA

South Asians

Breastfeeding 8.79 0.047 0.001 8.88 0.047 0.001

Age at time of collection 3.75 0.020 0.003 2.84 0.015 0.008

Time since weaning 5.23 0.030 0.001 NA

Delivery mode 1.10 0.012 0.34 NA

Antibiotics during pregnancy 0.52 0.003 0.85 NA

Antibiotics during labor 2.45 0.016 0.02 NA

Vegetarian status 1.32 0.007 0.22 NA

Gestational diabetes 0.48 0.003 0.88 NA

Years lived in Canada 0.92 0.005 0.46 NA

Time of introduction of solid food 1.35 0.022 0.14 NA

Formula at collection 2.07 0.015 0.05 NA

Formula in the first year 1.95 0.01 0.06 NA

Cow’s milk in the first year 2.24 0.012 0.04 NA

Weight gain in the first year 1.40 0.008 0.19 NA

Birth weight 1.27 0.007 0.24 NA

Permutational analysis of variance using Bray-Curtis dissimilarity matrices
NA not applicable
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oligosaccharides by members of the Clostridiales seen here
(Ruminococcus, Lachnospiraceae, and Oscillospira) include
short chain fatty acids like butyrate, which is used by host
cells as an energy source and can signal increased barrier
function [43]. Though also proposed to be chemoprotec-
tive, the relationship between luminal butyrate exposure
and colorectal cancer in humans has been examined only
indirectly in case-control studies [54]. Nevertheless, these
findings suggest different metabolic processes and immune
stimuli at work within the South Asian and white Cauca-
sian infant gastrointestinal tract, some of which may be ex-
plained by their heterogeneous diets.

When switching from a milk-based diet to a solid
food diet, prior studies have shown a decrease in the
abundance of Bifidobacterium along with an increase
in members of the Firmicutes (such as Clostridium
sp.) and Bacteroidetes [12, 20]. One study suggests
that it is the cessation of breastfeeding that is re-
quired for maturation of the gut microbiota to occur
with a decrease in Bifidobacterium and an increase in
members of the Clostridiales only occurring after
weaning [9]. As expected, after adjustment for ethni-
city, infant age, and weight gain in the first year, Bifi-
dobacterium and Lactobacillus were significantly

Table 4 Subgroup analysis of breastfed and not currently breastfed children at time of collection. Permutational analysis of variance
using Bray-Curtis dissimilarity matrices

F-Model R2 Pr(>F) F-Model R2 Pr(>F)

Currently breastfed

Ethnicity 15.43 0.104 0.001 18.01 0.112 0.001

Age 1.78 0.014 0.13 2.43 0.015 0.02

Delivery mode 1.06 0.015 0.38 NA

Antibiotics during pregnancy 1.32 0.009 0.21 NA

Antibiotics during labor 3.16 0.023 0.009 NA

Vegetarian status 5.69 0.040 0.001 2.17 0.01 0.04

Gestational diabetes 1.05 0.007 0.36 NA

Years lived in Canada 10.39 0.070 0.001 NA

Time of introduction of solid food 4.88 0.066 0.001 NA

Formula at collection 0.72 0.007 0.65 NA

Formula in the first year 2.81 0.02 0.009 NA

Cow’s milk in the first year 0.94 0.008 0.43 NA

Weight gain in the first year 7.26 0.05 0.001 3.55 0.02 0.008

Birth weight 2.74 0.019 0.01 NA

Not currently breastfed

Ethnicity 16.10 0.074 0.001 11.54 0.06 0.001

Infant age 2.46 0.012 0.02 2.14 0.01 0.03

Time since weaning 3.20 0.019 0.002 NA

Delivery mode 1.03 0.010 0.40 NA

Antibiotics during pregnancy 2.10 0.010 0.049 NA

Antibiotics during labor 1.54 0.008 0.15 NA

Vegetarian status 3.76 0.019 0.002 NA

Gestational diabetes 1.27 0.006 0.22 NA

Years in Canada 12.79 0.062 0.001 NA

Time of introduction of solid food 2.25 0.035 0.006 NA

Formula at collection 1.63 0.009 0.11 NA

Formula in the first year 2.48 0.013 0.01 NA

Cow’s milk in the first year 0.88 0.005 0.55 NA

Weight gain in the first year 2.25 0.01 0.03 NA

Birth weight 2.20 0.011 0.03 NA

NA not applicable
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associated with breastfeeding. Additionally, an in-
crease in the abundance of several genera within the
phylum Firmicutes were associated with not being
breastfed at the time of sampling.
Bifidobacteria, along with the LAB, are known to be

abundant members of the microbiome of breastfeeding
infants [55], whereas genera within the order Clostri-
diales are known to be more abundant within the gut of
adults [56]. Here bacterial profiles indicative of a breast
milk diet were common among South Asians even those
that were not breastfeeding at the time of collection,
suggesting that these infants retain more of a breastfeed-
ing microbiome than do white Caucasians of the same
age. The reasons for this are unclear; however, dietary

differences may be contributing. Our data show that
equal proportions of infants in both groups were breast-
fed in the first year but does not capture breastfeeding
frequency. It also shows that there was a much higher
rate of formula use and an earlier introduction to solid
food within South Asian than within white Caucasian in-
fants. Because self-reported vegetarianism was more fre-
quent in South Asians, it is possible that meat
consumption hastens, or non-meat diets delay, changes
induced within the infant gut microbiome during the
switch to a solid food diet. It is important to note, how-
ever, that to our knowledge an analysis of the adult
South Asian microbiome has not been reported, nor has
a description of the maturation of the South Asian infant
microbiome toward an adult-like composition; thus, our
data must be interpreted within the context of the study,
i.e., of South Asian infants born in Canada who consume
a South Asian diet.
The underlying construct of “Ethnicity” brings together

several biological and cultural factors, and it can be charac-
terized using a number of different parameters (e.g., dietary
habits, ancestral country of origin, etc.). In our multivariate
model, ethnicity and breast feeding status remained inde-
pendent and significant predictors of differences in the
overall microbial communities (beta diversity), whereas
vegetarian diet did not, which implies that the impact of
ethnicity which incorporates some unique dietary patterns
is not wholly explained by these dietary differences, as it
also reflects other differences between the groups. After
ensuring that these additional factors were potentially
accounted for (i.e., years living in Canada, antibiotic use,
timing of solid food introduction, etc.) we observed that
breastfeeding, infant age, and weight gain in the first year
significantly influenced the infant gut microbiome.
Strengths of our study include its relatively large size of

nearly 200 infants from each of two different ethnic groups
who have diverse dietary intakes; the availability of stool
samples collected at similar times using similar methods;
the high quality deep sequencing of the 16S rRNA gene for
bacterial identification; a reliability analysis to demonstrate
reproducibility of our methods; and detailed measurement
of maternal and infant covariates. Limitations include in-
complete data on maternal weight gain during and prior to
pregnancy, which limits our ability to assess the influence
of this important covariate on the infant gut microbiome;
ethnicity in this study refers to the group a person self-
identifies with and reflects a mix of cultural factors,
including language, diet, religion, and ancestry—thus,
ethnicity is a multidimensional construct which includes
some within-group heterogeneity, and differences attribut-
able to ethnicity may reflect a broad range of factors which
are not purely biological; and the lack of a direct measure
of infant dietary intake beyond feeding type at the time of
stool collection.

Fig. 3 Genera differentially associated with ethnicity (white Caucasian
(WC) and South Asian (SA)), breastfeeding (breastfeeding (BF) and not
breastfeeding (nBF)), infant age, or infant weight gain in the first
year (wt gain), through the multivariate boosted additive model tool
Maaslin. Bacterial relative abundance means across each category
shown as the size and significance as the shade of each circle (darker =
smaller p value; Additional file 2: Table S1). Significant association of
the microbiome with the continuous variables weight gain or age is
shown with symbols (positively (+) or negatively (−) associated;
Additional file 2: Table S1). Genera sorted taxonomically with
subgroups within the Firmicutes labeled in grey
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Conclusions
The infant gut microbiome is influenced by ethnicity
and breastfeeding in the first year of life. Ethnic differ-
ences in the gut microbiome may reflect maternal/infant
dietary differences and whether these differences are as-
sociated with future cardiometabolic outcomes can only
be determined after prospective follow-up.
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