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Secretory Immunoglobulin A (sIgA) plays a critical role to infant gut mucosal immunity. Delayed IgA pro-
duction is associated with greater risk of allergic disease. Murine models of stressful events during preg-
nancy and infancy show alterations in gut immunity and microbial composition in offspring, but little is
known about the stress-microbiome-immunity pathways in humans. We investigated differences in
infant fecal sIgA concentrations according to the presence of maternal depressive symptoms during
and after pregnancy. A subsample of 403 term infants from the Canadian Healthy Infant Longitudinal
Development (CHILD) cohort were studied. Their mothers completed the Center of Epidemiologic
Studies Depression Scale when enrolled prenatally and again postpartum. Quantified by
Immundiagnostik sIgA ELISA kit, sIgA from infant stool was compared across maternal depressive symp-
tom categories using Mann-Whitney U-tests and logistic regression models that controlled for various
covariates. Twelve percent of women reported clinically significant depressive symptoms only prenatally,
8.7% had only postpartum symptoms and 9.2% had symptoms both pre and postnatally. Infants born to
mothers with pre and postnatal symptoms had significantly lower median sIgA concentrations than those
in the reference group (4.4 mg/g feces vs. 6.3 mg/g feces; p = 0.033). The odds for sIgA concentrations in
the lowest quartile was threefold higher (95% CI: 1.25–7.55) when mothers had pre and postnatal symp-
toms, after controlling for breastfeeding status, infant age, antibiotics exposure and other covariates.
Postnatal symptoms were not associated with fecal sIgA, independently of breastfeeding status. Infants
born to mothers with depressive symptoms appear to have lower fecal sIgA concentrations, predisposing
them to higher risk for allergic disease.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

Critical to gut mucosal immunity in early life and a marker of
immune maturation in infants (Brandtzaeg, 2013), secretory
Immunoglobulin A (sIgA) is provided solely through breastmilk
and not via the placenta to protect the infant from infection during
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the first few weeks of life until the infant gut begins to produce
endogenous sIgA (Battersby and Gibbons, 2013; Walker, 2013).
Protective immunity fully develops in the infant within the first
year of life, although it can vary between individuals (Gleeson
and Cripps, 2004). This immunoglobulin prevents pathogen pene-
tration of the gut mucosa, but also allows for oral tolerance to envi-
ronmental antigens (Brandtzaeg, 2013). Respiratory and
gastrointestinal infections and allergic disorders are more common
in persons with IgA-deficiency, pointing to the importance of sIgA
in preventing these conditions (Yel, 2010). In addition, sIgA also
plays a key role in the establishment of the newborn’s gut micro-
biota composition. Delayed immune maturation and IgA produc-
tion in infants is associated with increased risk of IgE-related
allergic diseases, potentially related to altered infant microbial
composition (Kukkonen et al., 2010; Sandin et al., 2011).

A common condition, depression affects approximately 7–12%
of women during pregnancy and 7–19% of women after giving
birth (Gaynes et al., 2005; Gavin et al., 2005; Bennett et al.,
2004; Evans et al., 2012). The majority of women do not seek men-
tal health care for their symptoms of sadness and anxiety, loss of
enjoyment and interest, and changes in appetite and sleeping pat-
terns (McGarry et al., 2009; Byatt et al., 2016; Vigod et al., 2016).
Many of these symptoms affect the environment in which the
infant develops and have the capacity to cause developmental
delay in language and cognition (Grace et al., 2003); they can also
increase susceptibility to chronic disease. Accumulating epidemio-
logical evidence support links between pre and postnatal maternal
distress and the development of asthma and allergy (Klinnert et al.,
2001; Kozyrskyj et al., 2008; Guxens et al., 2014; Andersson et al.,
2016; van de Loo et al., 2016; Lee et al., 2016), which has been
attributed to maternal behaviours such as smoking or reduced
breastfeeding, or other factors which affect the infant’s immune
system, stress biology or risk for allergic diseases (Van Lieshout
and Macqueen, 2012; Dreger et al., 2010; Lodge and Dharmage,
2016; Cook-Mills, 2015).

Indeed, distress in the mother can reduce breastfeeding
(Bascom and Napolitano, 2015), the main source of sIgA
(Bridgman et al., 2016; Walker, 2010), promote smoking which
lowers breast milk IgA levels (Bachour et al., 2012) and increase
exposure to selective serotonin reuptake inhibitors (SSRIs), a pri-
mary treatment for depression, all of which have immunomodu-
latory effects on the fetus or infant (Vigod et al., 2016; Nguyen
et al., 2009; Ho et al., 2015). It can also induce stress in the
infant through reduced quality of mother-infant interactions,
such as responding appropriately to infant cues or playing with
the infant (McLearn et al., 2006). Mother-infant interaction is
emerging as a predictor of asthma and atopic diseases
(Mantymaa et al., 2003; Yatsenko et al., 2016; Letourneau
et al., 2017). Animal models of stressful events during pregnancy
and infancy show changes to the maternal vaginal microbiome
and to the intestinal microbial composition of offspring
(Jasarevic et al., 2015; Galley and Bailey, 2014; Jasarevic et al.,
2014). A first report in humans found infants born to mothers
with greater stress during pregnancy more likely have gut dys-
biosis (Zijlmans et al., 2015), perturbations in gut microbial com-
position (van Best et al., 2015). Specifically, infants exposed to
high maternal stress during gestation had reduced abundance
of lactic acid bacteria up to 3.5 months after birth compared
with those exposed to low stress levels in utero (Zijlmans
et al., 2015). Lactic acid bacteria are considered stimulatory in
gut IgA production (Kim et al., 2016). The sole study on intesti-
nal sIgA and stress which was in mice, indicated that chronic
restraint stress lowered sIgA concentrations in the small intes-
tine compared to the control group (Jarillo-Luna et al., 2007).
Few studies have addressed the stress-microbiome-immunity
connections in humans.
Using data from the Canadian Healthy Infant Longitudinal
Development (CHILD) birth cohort, the purpose of this study was
to determine the association between maternal pre and postnatal
depressive symptoms (DS) and infant fecal sIgA concentrations.
Our study tested for covariates not previously tested, such as
breastfeeding and antidepressant use. We hypothesized that
infants born to mothers with both pre and postnatal DS would
have lower fecal sIgA concentrations, and that some of the covari-
ates may explain this association.
2. Materials and methods

2.1. Study population

Pregnant women aged 18 and older were recruited from 2009
to 2012 into the CHILD birth cohort (www.childstudy.ca) of over
3000 families currently being followed. Written informed consent
was obtained at enrollment. This study was approved by the
University of Alberta, University of British Columbia, University
of Manitoba, and McMaster University Human Research Ethics
Boards. Infants were clinically assessed at birth and at three
months. Subbarao et al. (2015) documented the inclusion and
exclusion criteria and methodology for this cohort study. Children
born with major congenital abnormalities or respiratory distress
syndrome, born in a multiple birth, resulting from in vitro fertiliza-
tion or born before 35 weeks gestation were excluded. A subsam-
ple of 403 full-term infants of the CHILD cohort from three study
sites, Edmonton, Vancouver and Winnipeg, was investigated in this
quantitative study based on fecal sample availability.

2.2. Variables

2.2.1. Depressive symptoms (DS)
Maternal self-reported symptoms of depression were collected

at recruitment (mean 27 weeks) and 36 weeks gestation, and at
6 months and 12 months of child age. Pre and postnatal DS were
determined using the 20-item Center for Epidemiologic Studies
Depression (CES-D) Scale (Radloff, 1977). Mothers reported the fre-
quency of experiencing various depression behaviours, cognitions
and affect during the past one week using scores ranging from zero
(none of the time) to three (most or all the time; five to seven
days). The scores were summed, and sums of 16 and greater are
accepted as clinically significant levels of DS.

2.2.2. Fecal sIgA
Fecal secretory IgA was measured in stool samples that were

collected during the CHILD 3-month home visits; some visits were
delayed beyond 3–4 months. Moraes et al. (2015) documented the
detailed stool collection procedure for CHILD. Stool samples (5–10
g) were collected from a freshly soiled diaper using a sterile spat-
ula, divided into aliquots and stored at �80 �C. Freezing of stool has
been reported to not have a major impact on the quantification of
sIgA (Forrest, 1992).

The sIgA ELISA (enzyme-linked immunosorbent assay) kit from
Immundiagnostik was used to measure the amounts of sIgA in mg
per gram of feces. After thawing the stool samples, sIgA was
extracted with IDK Extract extraction buffer. The stool samples
were diluted 1:125 in wash buffer. The diluted patient samples,
controls, and 100 ll standards were put into a microtiter plate
and washed and incubated at room temperature. After the wells
were aspirated and washed, the microtiter plate was tapped on
absorbent paper. 100 ll of conjugate was added, and then the sam-
ples were incubated at room temperature and shaken on a hori-
zontal mixer. After the final washing step and adding TMB
substrate, the samples were incubated in the dark for 10–20 min.

http://www.childstudy.ca
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Absorption was determined with an ELISA reader at 450 nm
against 620 nm as a reference. The results of the microplate reader
were multiplied by the dilution factor of 12,500. Standards with
known concentrations provided in the kit were used to create stan-
dard curves to determine concentrations.
2.2.3. Potential covariates
Potential covariates were selected from data obtained from the

CHILD general cohort questionnaires administered at the prenatal
period, at birth and during 3-month visits.

Depression history was collected from mother reports of having
depression before pregnancy. Maternal asthma or allergy status
was based on self-reports during pregnancy. Information on moth-
ers taking selective serotonin reuptake inhibitors (SSRIs) was
obtained from maternal medication questionnaires. Delivery mode
information recorded in delivery records or neonatal health charts
was categorized as: emergency caesarean, scheduled caesarean
and vaginal delivery. Antibiotic exposure determined whether
the infant was exposed to antibiotics at any time from birth to 3
months of age (caesarean section, antibiotics during vaginal deliv-
ery, antibiotics used before the 3-month visit). Gravida indicated
whether the mothers were primigravida or not. Small-for-
gestational-age (SGA) was defined as born with birthweight below
10th percentile for corresponding gestational age and gender based
on Canadian birthweight for gestational age charts. Breastfeeding
status at stool collection indicated whether the infant was exclu-
sively breastfed, partially breastfed or not breastfed. Number of
children and pets at home living with the infant before the 3-
month visit was extracted from home environment questionnaires.
Prenatal smoke exposure was considered positive when the
mother smoked during pregnancy or another household member
smoked, and postnatal smoke exposure was positive when a mem-
ber in the household smoked. Infant allergic eczema was deter-
mined based on parental reports if there was rash in more than
one area except diaper rash (face, inside elbow, ankle, back of knee,
wrist/hand, scalp, other) or if there was a diagnosis of atopic
dermatitis.
2.3. Statistical analyses

Statistical analyses were conducted using SPSS version 24.0,
and figures were created from GraphPad Prism 6. Based on CES-D
scores, mothers were classified into one of 4 groups: mothers with
scores above the CES-D cut-off only at 27 or 36 weeks gestation
were grouped in the Prenatal group, mothers with scores above
the cut-off only at 6 or 12 months (N = 2 for infants with 12-
month data only) of child age were grouped into the Postnatal
group, mothers with higher scores in both pre and postnatal peri-
ods were grouped into the Both group, and mothers with scores
below the cut-off at both time points were placed in the reference
group. The DS groups were mutually exclusive. Due to the skew-
ness of the sIgA data, we compared median concentrations of sIgA
in each of the DS groups to the reference group. Mann-Whitney U-
tests with sequential Bonferroni correction for three pairs of inter-
est were used to detect median differences in sIgA concentrations.
Mann-Whitney tests between the Both and reference categories
were compared to an alpha of 0.05 a priori, while Prenatal and
Postnatal comparisons to reference were compared to sequentially
adjusted critical p-values (prenatal having the most adjustment).
Logistic regression modelling was conducted to find DS group asso-
ciations with the lowest quartile sIgA (<3.23 mg/g feces) vs. the
other three quartiles, adjusting for confounding factors that were
selected on the 10% rule (Bliss et al., 2012), where if the addition
of the covariate caused a percent change in the odds ratio greater
than 10%, the covariate was kept in the model.
3. Results

Twelve percent of women in our sample had clinically signifi-
cant DS only in the prenatal period, 8.7% had elevated symptoms
postpartum only and 9.2% had clinically significant symptoms both
pre and postnatally (Table 1 and S1). A greater percentage of
women with existing depression or being treated with SSRIs, com-
pared to women without this history, reported DS symptoms dur-
ing pregnancy or postnatally as well (Table 1). The mean of stool
collection time was 3.8 months, while the range was 2–8 months.
Significantly lower median fecal sIgA concentrations or higher per-
centages of sIgA values in the lowest quartile were observed in
infants partially or not breastfed and among infants living with
household pets. In the reference group, 4% of women took SSRIs
at any time during the pre and postnatal period, while 18.8% in
the Prenatal group, 3.2% in the Postnatal group and 16.7% in the
Both group took SSRIs (Table 1). Our subsample was representative
of all infants in the three CHILD sites, with only breastfeeding sta-
tus rates being significantly lower among study infants (Table S1).
The increase in sample size of non-breastfed infants gives us suffi-
cient sample size to adjust models for this confounding factor.

Median sIgA concentrations were significantly lower in the
infants of the Both group (4.4 mg/g feces, IQR = 2.4–8.0) compared
to the reference group (6.3 mg/g feces, IQR = 3.6–12.4, p = 0.033;
Fig. 1). Infants in the Prenatal group had median sIgA concentra-
tions of 5.19 (IQR = 2.02–9.78) mg/g feces, and those in the Postna-
tal group had a median of 5.69 (IQR = 2.62–8.56) mg/g feces;
however, these groups did not have significantly lower concentra-
tions than the reference group. The percentage of infants having
sIgA concentrations in the lowest quartile (<3.23 mg/g feces) was
20% in the reference group, which was lower than the percentages
found in any of the DS groups (35–37%; Fig. 1).
3.1. Median infant fecal sIgA by maternal depressive symptoms,
stratified comparisons

Following stratification by breastfeeding status at stool collec-
tion, significantly lower sIgA concentrations were seen in not
breastfed infants of mothers with both pre and postnatal DS com-
pared to the reference group (p = 0.033; Fig. 2). Median sIgA con-
centrations did not differ by DS group in partially breastfed
infants, but appeared to be lower across the DS groups of exclu-
sively breastfed infants; borderline statistical significance was
noted for the Prenatal group. Exclusively breastfed infants had a
larger interquartile range in values than infants partially breastfed
or not breastfed (Table S2). As shown in Figs. 3 and 4, there were
many instances when significantly lower sIgA concentrations were
revealed in the Both group following stratification by other covari-
ates. This was observed for infants exposed to antibiotics (p =
0.027), born to a mother with no depression history (p = 0.021)
and born to a mother who had asthma or another allergic condition
(p = 0.032). Fig. 4 shows significantly lower infant sIgA concentra-
tions in the Postnatal group compared to the reference group when
the mother had asthma or allergy during pregnancy (p = 0.041).
3.2. Lowest quartile sIgA by maternal depressive symptoms, crude and
adjusted associations

The crude odds ratio (OR) for lowest fecal sIgA quartile was 2.12
(95% CI: 1.02–4.42; Fig. 5) for the Both DS group, indicating that
infant exposure to maternal DS during the pre- and postnatal peri-
ods elevated the likelihood of low fecal sIgA concentrations by 2-
fold when compared to infants of mothers with few DS symptoms.
In the same crude model, the OR for the Prenatal DS group was 2.08



Table 1
Infant fecal sIgA concentrations and percentage distribution of potential covariates in relation to maternal depressive symptoms and low sIgA (n = 403).

Reference
(3.9% SSRI use)

Prenatal only
(18.8% SSRI use)

Postnatal only
(3.2% SSRI use)

Both
(16.7% SSRI use)

Fecal sIgA
concentrations

Lowest quartile
sIgA

N (%) N (%) N (%) N (%) p-value* median (IQR) p-value** N (%) p-value***

Infant sex
Male 159 (71) 25 (11.2) 20 (8.9) 20 (8.9) 0.89 6.1 (3.3–12.0) 0.58 54 (24) 0.67
Female 121 (68.4) 24 (13.6) 15 (8.5) 17 (9.6) 5.6 (3.1–10.4) 46 (25.8)

Pre-pregnancy depression history
Yes 40 (50.6) 18 (22.8) 10 (12.7) 11 (13.9) <0.001 6.2 (3.3–11.4) 0.04 25 (31.6) 0.13
No 236 (74.9) 29 (9.2) 25 (7.9) 25 (7.9) 5.1 (2.3–9.3) 74 (23.4)

Maternal asthma/allergy during pregnancy
Yes 175 (69.2) 33 (13) 18 (7.1) 27 (10.7) 0.19 6.0 (3.3–11.0) 0.61 61 (24.1) 0.59
No 101 (71.1) 15 (10.6) 17 (12) 9 (6.3) 5.7 (3.0–11.1) 38 (26.6)

Delivery mode
Vaginal 198 (70.2) 30 (10.6) 30 (10.6) 24 (8.5) 0.10a 6.1 (3.2–11.2) 0.50 70 (24.6) 0.56
Scheduled caesarean 47 (69.1) 8 (17) 4 (8.5) 3 (6.4) 5.6 (3.5–10.9) 19 (27.9)
Emergency caesarean 32 (68.1) 11 (16.2) 1 (1.5) 9 (13.2) 5.4 (3.0–10.5) 9 (19.1)

Antibiotics exposure up to 3 months
Yes 155 (70.5) 31 (14.1) 16 (7.3) 18 (8.2) 0.28 5.6 (3.1–11.2) 0.28 58 (26.2) 0.43
No 120 (70.6) 15 (8.8) 18 (10.6) 17 (10) 6.1 (3.3–12.0) 39 (22.8)

Gravida
Primigravida 112 (73.7) 19 (12.5) 12 (7.9) 9 (5.9) 0.32 5.1 (2.9–10.0) 0.08 43 (28.3) 0.18
Multigravida 165 (67.3) 30 (12.2) 23 (9.4) 27 (11) 6.4 (3.5–12.1) 55 (22.3)

Small for gestational age
Yes 20 (74.1) 4 (14.8) 2 (7.4) 1 (3.7) 0.83a 7.5 (4.5–16.0) 0.06 3 (11.1) 0.11a

No 256 (69.6) 45 (12.2) 33 (9) 34 (9.2) 5.7 (3.1–10.8) 95 (25.7)

Prenatal SSRI use
Yes 5 (27.8) 8 (44.4) 0 (0) 5 (27.8) <0.001a 3.6 (2.5–7.0) 0.12 6 (33) 0.42
No 269 (71.9) 40 (10.7) 34 (9.1) 31 (8.3) 6.0 (3.2–11.4) 93 (24.8)

Postnatal SSRI use
Yes 10 (43.5) 8 (34.8) 1 (4.3) 4 (17.4) <0.01a 4.6 (3.3–7.4) 0.18 6 (26.1) 0.89
No 266 (71.9) 40 (10.8) 31 (8.4) 33 (8.9) 6.0 (3.2–11.5) 92 (24.8)

Prenatal smoke exposure
Yes 10 (62.5) 3 (18.8) 2 (12.5) 1 (6.3) 0.15a 5.1 (1.8–12.3) 0.39 6 (37.5) 0.24
No 203 (72) 32 (11.3) 26 (9.2) 21 (7.4) 6.0 (3.2–11.1) 69 (24.4)

Postnatal smoke exposure
Yes 31 (67.4) 7 (15.2) 2 (4.3) 6 (13) 0.12a 4.9 (2.8–9.6) 0.25 14 (30.4) 0.37
No 184 (72.2) 29 (11.4) 25 (9.8) 17 (6.7) 6.1 (3.2–11.5) 62 (24.4)

Pets at home
Yes 127 (68.6) 22 (11.9) 13 (7) 23 (12.4) 0.20 5.3 (2.7–10.4) 0.03 55 (29.7) 0.05
No 151 (70.9) 27 (12.7) 21 (9.9) 14 (6.6) 6.4 (3.7–12.0) 45 (21)

Children at home
Yes 135 (71.4) 20 (10.6) 17 (9) 17 (9) 0.79 6.5 (3.6–11.9) 0.11 43 (22.6) 0.34
No 144 (68.9) 29 (13.9) 17 (8.1) 19 (9.1) 5.3 (3.1–10.7) 56 (26.8)

Breastfeeding status at stool collection
None 64 (64) 15 (15) 11 (11) 10 (10) 0.30 3.4 (2.0–5.9) <0.001 47 (47) <0.001
Partial 108 (72) 13 (8.7) 16 (10.7) 13 (8.7) 5.5 (3.2–10.0) 39 (26)
Exclusive 99 (75.6) 15 (11.5) 6 (4.6) 11 (8.4) 10.1 (5.6–16.2) 11 (8.4)

Infant allergic eczema
Yes 28 (65.1) 4 (9.3) 4 (9.3) 7 (16.3) 0.36a 5.9 (3.4–11.2) 0.84 9 (20.9) 0.55
No 251 (71.1) 44 (12.5) 28 (7.9) 30 (8.5) 5.8 (3.1–11.0) 89 (25.1)

The bolded p-values were there to emphasize statistical significance with an alpha of 0.05.
* Percent distribution of potential covariates in relation to maternal depressive symptoms. (v2)
** Mann-Whitney tests for median differences.
*** Percent distribution of covariates in relation to lowest quartile sIgA concentrations. (v2)
a Fischer’s Exact Test.
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(95% CI: 1.08–4.01) and for the Postnatal DS group, it was 2.31 (95%
CI: 1.10–4.87).

The final logistic regression model was obtained after the pur-
poseful selection of confounding and clinically significant variables
(see Table S3). In this model, the likelihood of having low fecal sIgA
concentrations was 3.07 for infants in the Both group, with multi-
ple adjustment for infant age at stool sample collection, breast-
feeding status, antibiotics exposure, presence of household pets,
maternal gravida status, maternal asthma or allergy during preg-
nancy and prenatal SSRI use (95% CI: 1.25–7.55; Fig. 5).
There was a 2.44 (95% CI: 1.07–5.57) greater odds of having
lowest quartile sIgA when mothers were in the Prenatal group
in the same model. However, the infant fecal sIgA association
with maternal postnatal DS was lost in the final model, which
includes the breastfeeding status variable. Thirty infants had
their stool collected at greater than six months; sensitivity
analyses indicated that including these infants did not greatly
affect our results (Table S4). These infants were included in
our final model and we adjusted for infant age at sampling
time in this model.



Fig. 1. Infant fecal sIgA concentrations depending on depressive symptoms (DS) status of the mother. Secretory IgA concentrations were significantly lower in the Both group
compared to the reference group. Lowest quartile cut-off for sIgA used in logistic regression models was at 3.23 mg/g feces. Percentages of those below the lowest quartile
cut-off in the reference group was 20.4%, and for the DS groups, they were 34.7%, 37.1% and 35.1% respectively.

Fig. 2. Secretory IgA concentrations according to breastfeeding status at stool collection time for the reference and maternal depressive symptoms (DS) groups. Exclusively
breastfed infants (green) showed borderline significantly lower sIgA concentrations in infants of the Prenatal group compared to the reference group while infants not
breastfed (blue) had significantly lower sIgA when in the Both group compared to the reference group. No significant differences were seen in the partially breastfed infants
(teal) among DS groups. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4. Discussion

In a subsample of 403 infants from a prospective birth cohort,
exposure to clinically significant levels of maternal depressive
symptoms throughout the pre and postnatal period, was associated
with reduced infant fecal sIgA concentrations in the first few
months of life. We found a statistically significant 3-fold higher
likelihood of having sIgA concentrations in the lowest quartile for
these infants after multiple adjustment for various covariates
(95% CI: 1.25–7.55). This significant association is consistent with
the sole study which found that repeated restraint stress, applied
directly to offspring mice and not dams during pregnancy, lowered
total intestinal IgA in mice (Jarillo-Luna et al., 2007). Maternal pre-
natal stress affects the maternal gut and vaginal microbiome, both
of which influence initial microbial colonization of the infant gut
(Beijers et al., 2014). Although these animal models of stress are
not directly applicable to depression in humans, stress is a com-
mon risk factor for maternal depression (Vigod et al., 2016;
Norhayati et al., 2015), and both stress and depression, along with
anxiety, are presentations of psychological distress. A first report
on humans has shown prenatal maternal distress to be associated
with gut dysbiosis in infants and the development of gastrointesti-
nal symptoms (eg. diarrhea and gastroenteritis) and allergic symp-
toms in the first three months of the infant’s life (Zijlmans et al.,
2015), but whether maternal distress also affects human infant
gut immunity has not been previously investigated.

Our results show that maternal depressive symptoms are asso-
ciated with lowered infant fecal sIgA, a vital component in the first-
line defense of the immature immune system and the development
of gut microbiota in early life. Infants are exposed to a myriad of
pathogenic and commensal microbes after birth, and the reason
as to why some newborns are not able to survive this transition
is still unknown. Evidence of the important role of sIgA in this tran-
sition comes from murine models, which show lasting alterations



Fig. 4. Infant sIgA concentrations based on maternal depressive symptoms groups after stratification for the presence of maternal asthma or allergy during pregnancy. Green
data points indicate breastfed infants at stool collection, and blue indicates infants not breastfed (missing breastfeeding status is in gray). 2–10 points were omitted from each
graph to enable better visualization of levels in the lower range. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 3. Secretory IgA concentrations among depressive symptoms groups after stratification for maternal depression history and antibiotics exposure up to three months of
infant age. Breastfed (both exclusively and partially) infants are in green and infants not breastfed are in blue (missing breastfeeding status is in gray). 2–10 points were
omitted from each graph to enable better visualization of levels in the lower range.

Fig. 5. Crude and final model odds ratios (OR) of infant sIgA concentrations in the lowest quartile for exposure to clinically significant levels of maternal depressive
symptoms. Significant OR indicated with an asterisk. Final model controlled for infant age at stool collection, breastfeeding status at stool collection, antibiotics exposure,
maternal asthma or allergy during pregnancy, pets, gravida and prenatal SSRI use. Single adjustment models are shown in the Supplementary Table S3.
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to gut microbial composition and compromised gut epithelial bar-
rier function in pups born to sIgA-deficient dams (Rogier et al.,
2014). In humans, delayed immune maturation and delayed pro-
duction of serum or fecal IgA in early life has been linked to greater
risk of atopic disease in later childhood (Kukkonen et al., 2010;
Sandin et al., 2011; Orivuori et al., 2014). Further, differential IgA
affinity for gut microbiota may be a factor. In their fecal sIgA of
1-year-old infants, Dzidic et al. (2016) observed lower sIgA binding
to Bacteriodes genus and Escherichia species in children who devel-
oped atopy and asthma compared to the control group.

Prenatal and postnatal maternal distress have both been linked
to childhood atopic disease (Andersson et al., 2016; van de Loo
et al., 2016; Tibosch et al., 2011). Consistent with the reported
impact of prenatal maternal distress on the IgA-stimulatory
microbes, lactobacilli and bifidobacteria (Zijlmans et al., 2015),
prenatal depression was a key feature of associated reductions to
infant fecal IgA in our study. Plasma B cells, which are responsible
for the release of IgA, appear in Peyer’s patches around 12–16
weeks of fetal gestation (Brugman et al., 2015). Murine models
have shown a lowering of plasma B cell counts after direct expo-
sure to stress due to the actions of glucocorticoids and cate-
cholamines (Martinez-Carrillo et al., 2011), and these hormones
in turn, reduced intestinal IgA (Jarillo-Luna et al., 2007). In humans,
elevated corticosterone, seen with maternal prenatal stress, is a
strong Th2 cytokine inducer and increases allergic responses in
the offspring (Cook-Mills, 2015). Of note, observed associations
with fecal sIgA were independent of prenatal SSRI use, and theoret-
ically, the activity of SSRIs on serotonin receptors on B cells (Cloez-
Tayarani and Changeux, 2007). Hence, in the event that elevated
maternal glucocorticoids or catecholamines lower B cells in the
human fetus and newborn infant, this effect could lower or delay
IgA production in the developing infant independent of serotonin
activity.

The chronicity of maternal prenatal depressive symptoms is less
well studied but maternal distress often does not end at birth
(Beijers et al., 2014). Our results suggest that continued exposure
to maternal depression beyond the time period of fetal develop-
ment has greater influence on infant gut immunity than exposure
to maternal pre or postnatal distress in isolation. They were consis-
tent with Jarillo-Luna’s murine model of direct stress exposure
(Jarillo-Luna et al., 2007) and independent of maternal postnatal
behaviours related to depression in our study, such as maternal
smoking and reduced breastfeeding. They were also independent
of another postnatal environmental factor that influences mental
health and infant gut microbial composition – household pets
(McConnell et al., 2011; Tun et al., 2017). We found household
pet ownership to be associated with lowered fecal sIgA concentra-
tions, which seems contrary to notions of immune stimulation by
environmental microbes (Lambrecht and Hammad, 2017). How-
ever, pet exposure have shown to reduce the abundance of certain
species of lactobacilli and bifidobacteria (Martin et al., 2016; Azad
et al., 2013).

In the absence of prenatal depressive symptoms, breastfeeding
status greatly affected the association between postnatal maternal
depressive symptoms and infant sIgA concentrations. The odds
ratio for postnatal depressive symptoms lost significance with
the addition of the breastfeeding status variable, suggesting that
reduction of breastmilk intake may explain the very low concen-
trations of infant sIgA seen with maternal postnatal depressive
symptoms. Interventions encouraging breastfeeding in depressed
mothers will raise infant fecal IgA concentrations; yet, breastfeed-
ing can be a source of stress and frustration in mothers. Of note,
breastfeeding status was controlled in final models yielding signif-
icant associations for the ‘prenatal’ and ‘pre and postnatal’ groups,
and pointing to the potential for maternal depressive symptoms to
impact gut immunity in breastfed infants as well. sIgA production
in breastmilk is reported to be negatively correlated with anxiety,
anger and depression, with stronger correlations found for anxiety
than depression (Kawano and Emori, 2015). This influence of
maternal anxiety on breastmilk sIgA may explain the large varia-
tion in fecal IgA concentrations of exclusively breastfed infants
observed in our current and earlier study (Bridgman et al., 2016).

The strengths for our study include the measurement of fecal
sIgA in a large number of infants from a general population cohort
and the administration of a validated questionnaire for maternal
depressive symptoms during pregnancy and postpartum (Radloff,
1977). Although our study included infants with fecal samples col-
lected at 6–8 months, postnatal depressive symptoms were
assessed after the time of stool collection in many infants. In
women with prenatal depression, two recent studies reported little
change in postnatal depressive symptom levels over the range of
4–12 months, or 1–12 months (van der Waerden et al., 2017;
McCall-Hosenfeld et al., 2016). Hence, using 6-month or even 12-
month symptom data would not have biased findings in the pre
and postnatal depression group. On the other hand, due to the
low number of women who took SSRIs, adjustment for SSRIs may
have been inadequate. Finally, since women were not queried on
symptoms of anxiety, which can strongly affect breast milk levels
of sIgA (Kawano and Emori, 2015), we were unable to assess this
source of distress on infant fecal sIgA. Maternal anxiety may also
have contributed to the large variation in sIgA concentrations
within breastfed infants and our inability to find statistical signif-
icance for lower values observed in the DS-exposed breastfed
infants.

In conclusion, we found evidence for an association between
perinatal depressive symptoms in women and gut immunity in
their offspring within the first few months of life. When mothers
experienced depressive symptoms during pregnancy and postpar-
tum, infants were more likely to have lower sIgA concentrations in
their gut, even after controlling for various covariates. Based on
population-level findings, this study highlights the importance of
maternal psychosocial well-being during the pre and postnatal
periods in shaping the immune health of newborns.
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